Normalized solutions for nonlinear Schrodinger systems with linear couples

被引:19
作者
Chen, Zhen [1 ]
Zou, Wenming [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Nonlinear Schrodinger systems; Normalized solution; Global minimizer; Potential;
D O I
10.1016/j.jmaa.2021.125013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the normalized solutions to the following system {-Delta u + (V-1(x) +lambda(1)) u = mu(1)vertical bar u vertical bar p(-2)u + beta v in R-N, -Delta v + (V-2(x) +lambda(2)) v = mu(2)vertical bar v vertical bar q(-2)v + beta u in R-N, integral(RN) u(2) - a, integral(RN) v(2) - b, with the mass-subcritical condition 2 < p, q < 2 + 4/N, where mu(1), mu(2), a, b > 0, beta is an element of R \{0} are prescribed; lambda(1), lambda(2) is an element of R are to be determined. We prove the existence of a solution with prescribed L-2-norm under some various conditions on the potential V-1, V-2: R-N -> R. The proof is based on the refined energy estimates. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 29 条
[1]   Multi-bump solitons to linearly coupled systems of nonlinear Schrodinger equations [J].
Ambrosetti, A. ;
Colorado, E. ;
Ruiz, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :85-112
[2]   Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn [J].
Ambrosetti, Antonio ;
Cerami, Giovanna ;
Ruiz, David .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2816-2845
[3]   Remarks on some systems of nonlinear Schrodinger equations [J].
Ambrosetti, Antonio .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2008, 4 (01) :35-46
[4]  
[Anonymous], 2001, ANAL GRADUATE STUDIE
[5]  
Bartsch T, ARXIV20080743V1
[6]   Normalized solutions for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Zhong, Xuexiu ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2021, 380 (3-4) :1713-1740
[7]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[8]   Normalized solutions for nonlinear Schrodinger systems [J].
Bartsch, Thomas ;
Jeanjean, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :225-242
[9]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[10]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614