SKEW BRACES AND THE YANG BAXTER EQUATION

被引:228
作者
Guarnieri, L. [1 ]
Vendramin, L. [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat FCEN, PAB I Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
关键词
SET-THEORETIC SOLUTIONS; CONJECTURE;
D O I
10.1090/mcom/3161
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Braces were introduced by Rump to study non-degenerate involutive set-theoretic solutions of the Yang Baxter equation. We generalize Rump's braces to the non-commutative setting and use this new structure to study not necessarily involutive non-degenerate set-theoretical solutions of the Yang Baxter equation. Based on results of Bachiller and Catino and Rizzo, we develop an algorithm to enumerate and construct classical and non-classical braces of small size up to isomorphism. This algorithm is used to produce a database of braces of small size. The paper contains several open problems, questions and conjectures.
引用
收藏
页码:2519 / 2534
页数:16
相关论文
共 42 条
[1]  
[Anonymous], 2007, Dover books on physics
[2]  
Bachiller D., ARXIV150302814
[3]   Counterexample to a conjecture about braces [J].
Bachiller, David .
JOURNAL OF ALGEBRA, 2016, 453 :160-176
[4]   Classification of braces of order p3 [J].
Bachiller, David .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (08) :3568-3603
[5]   PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL [J].
BAXTER, RJ .
ANNALS OF PHYSICS, 1972, 70 (01) :193-&
[6]   On groups of central type, non-degenerate and bijective cohomology classes [J].
Ben David, Nir ;
Ginosar, Yuval .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 172 (01) :317-335
[7]   A millennium project: Constructing small groups [J].
Besche, HU ;
Eick, B ;
O'Brien, EA .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (05) :623-644
[8]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[9]   REGULAR SUBGROUPS OF THE AFFINE GROUP AND RADICAL CIRCLE ALGEBRAS [J].
Catino, Francesco ;
Rizzo, Roberto .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (01) :103-107
[10]   Braces and the Yang-Baxter Equation [J].
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) :101-116