Exciton-phonon coupling strength in single-layer MoSe2 at room temperature

被引:47
作者
Li, Donghai [1 ]
Trovatello, Chiara [2 ]
Dal Conte, Stefano [2 ]
Nuss, Matthias [1 ]
Soavi, Giancarlo [3 ,4 ]
Wang, Gang [3 ]
Ferrari, Andrea C. [3 ]
Cerullo, Giulio [2 ,5 ]
Brixner, Tobias [1 ,6 ]
机构
[1] Univ Wurzburg, Inst Phys & Theoret Chem, D-97074 Wurzburg, Germany
[2] Politecn Milan, Dipartimento Fis, Piazza L da Vinci 32, I-20133 Milan, Italy
[3] Univ Cambridge, Cambridge Graphene Ctr, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[4] Friedrich Schiller Univ Jena, Abbe Ctr Photon, Inst Solid State Phys, Max Wien Pl 1, D-07743 Jena, Germany
[5] IFN CNR, Piazza L da Vinci 32, I-20133 Milan, Italy
[6] Univ Wurzburg, Ctr Nanosyst Chem CNC, Theodor Boveri Weg, D-97074 Wurzburg, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
D O I
10.1038/s41467-021-20895-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton-phonon coupling strength has not been measured at room temperature. Here, we use two-dimensional micro-spectroscopy to determine exciton-phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time induced by the coupling between A excitons and A(1) optical phonons. Analysis of beating maps combined with simulations provides the exciton-phonon coupling. We get a Huang-Rhys factor similar to 1, larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton-phonon coupling also in other heterogeneous semiconducting systems, with a spatial resolution similar to 260nm, and provides design-relevant parameters for the development of optoelectronic devices.
引用
收藏
页数:9
相关论文
共 76 条
  • [71] Comparison of Electronic and Vibrational Coherence Measured by Two-Dimensional Electronic Spectroscopy
    Turner, Daniel B.
    Wilk, Krystyna E.
    Curmi, Paul M. G.
    Scholes, Gregory D.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15): : 1904 - 1911
  • [72] van Amerongen H., 2000, Photosynthetic Excitons
  • [73] Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides
    Wang, Zi-Wu
    Li, Run-Ze
    Dong, Xi-Ying
    Xiao, Yao
    Li, Zhi-Qing
    [J]. FRONTIERS OF PHYSICS, 2018, 13 (04)
  • [74] Intravalley Spin-Flip Relaxation Dynamics in Single-Layer WS2
    Wang, Zilong
    Molina-Sanchez, Alejandro
    Altmann, Patrick
    Sangalli, Davide
    De Fazio, Domenico
    Soavi, Giancarlo
    Sassi, Ugo
    Bottegoni, Federico
    Ciccacci, Franco
    Finazzi, Marco
    Wirtz, Ludger
    Ferrari, Andrea C.
    Marini, Andrea
    Cerullo, Giulio
    Dal Conte, Stefano
    [J]. NANO LETTERS, 2018, 18 (11) : 6882 - 6891
  • [75] STIMULATED-PICOSECOND-PHOTON-ECHO STUDIES OF LOCALIZED EXCITON RELAXATION AND DEPHASING IN GAAS/ALXGA1-XAS MULTIPLE QUANTUM-WELLS
    WEBB, MD
    CUNDIFF, ST
    STEEL, DG
    [J]. PHYSICAL REVIEW B, 1991, 43 (15) : 12658 - 12661
  • [76] Exciton dynamics and annihilation in WS2 2D semiconductors
    Yuan, Long
    Huang, Libai
    [J]. NANOSCALE, 2015, 7 (16) : 7402 - 7408