Mining Prevalent Co-location Patterns Based on Global Topological Relations

被引:3
|
作者
Wang, Jialong [1 ]
Wang, Lizhen [1 ]
Wang, Xiaoxu [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Yunnan, Peoples R China
来源
2019 20TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2019) | 2019年
基金
中国国家自然科学基金;
关键词
spatial data mining; prevalent co-location pattern; Delaunay triangulation; distance constraint;
D O I
10.1109/MDM.2019.00-55
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatial co-location pattern mining is an important branch in the spatial data mining area, which discovers subsets of spatial features whose instances are frequently located together in the geographic space. The proximity between instances is defined by a distance threshold given by the user in traditional spatial co-location pattern mining. However, the user doesn't know which distance threshold is appropriate in most cases, even for experts. Besides, different densities of instance distribution are not considered in a dataset when using a unified distance threshold to measure the proximity. Also, global topological relations of instances are ignored in mining. In this paper, we consider the global topological relations by constructing Delaunay triangulation of spatial instances and calculate a distance constraint for each instance based on the constructed Delaunay triangulation. We redefine the proximity of instances according to the distance constraint so that users don't have to worry about giving an appropriate distance threshold when mining prevalent co-location patterns. We propose a new algorithm PTB based on a proximity relationship tree P-tree which stores the proximity relationships between instances. The experimental evaluation of several real-world datasets shows that our algorithm can get better results. We also evaluate each parameter and the number of features and instances affecting the efficiency of the algorithm by using synthetic datasets.
引用
收藏
页码:210 / 215
页数:6
相关论文
共 50 条
  • [21] Mining Co-location Patterns in Incremental Spatial Databases
    Chang, Ye-In
    Wu, Chen-Chang
    Yen, Ching-Yi
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 141 - 148
  • [22] Mining Statistically Significant Co-location and Segregation Patterns
    Barua, Sajib
    Sander, Joerg
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (05) : 1185 - 1199
  • [23] Mining Spatial Co-location Patterns by the Fuzzy Technology
    Lei, Le
    Wang, Lizhen
    Wang, Xiaoxuan
    2019 10TH IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (ICBK 2019), 2019, : 119 - 126
  • [24] A maximal ordered ego-clique based approach for prevalent co-location pattern mining
    Wu, Pingping
    Wang, Lizhen
    Zou, Muquan
    INFORMATION SCIENCES, 2022, 608 : 630 - 654
  • [25] Cohesion Based Co-location Pattern Mining
    Zhou, Cheng
    Cule, Boris
    Goethals, Bart
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (IEEE DSAA 2015), 2015, : 539 - 548
  • [26] Mining fuzzy sub-prevalent co-location pattern with dominant feature
    Xiong, Kaifang
    Chen, Hongmei
    Wang, Lizhen
    Xiao, Qing
    30TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2022, 2022, : 261 - 270
  • [27] Mining Spatial Co-Location Patterns Based on Overlap Maximal Clique Partitioning
    Vanha Tran
    Wang, Lizhen
    Zhou, Lihua
    2019 20TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2019), 2019, : 467 - 472
  • [28] A Framework for Co-location Patterns Mining in Big Spatial Data
    Garaeva, A.
    Makhmutova, F.
    Anikin, I.
    Sattler, Kai-Uwe
    PROCEEDINGS OF 2017 XX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM), 2017, : 477 - 480
  • [29] A Framework for Mining Spatial High Utility Co-location Patterns
    Yang, Shisheng
    Wang, Lizhen
    Bao, Xuguang
    Lu, Junli
    2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2015, : 595 - 601
  • [30] Enumeration of maximal clique for mining spatial co-location patterns
    Al-Naymat, Ghazi
    2008 IEEE/ACS INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, VOLS 1-3, 2008, : 126 - 133