A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data

被引:169
|
作者
Song, X [1 ]
Davidian, M [1 ]
Tsiatis, AA [1 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
informative censoring; mixed model; proportional hazards; SNP density; survival;
D O I
10.1111/j.0006-341X.2002.00742.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Joint models for a time-to-event (e.g., survival) and a longitudinal response have generated considerable recent interest. The longitudinal data are assumed to follow a mixed effects model, and a proportional hazards model depending on the longitudinal random effects and other covariates is assumed for the survival endpoint. Interest may focus on inference on the longitudinal data process, which is informatively censored, or on the hazard relationship. Several methods for fitting such models have been proposed, most requiring a parametric distributional assumption (normality) on the random effects. A natural concern is sensitivity to violation of this assumption; moreover, a restrictive distributional assumption may obscure key features in the data. We investigate these issues through our proposal of a likelihood-based approach that requires only the assumption that the random effects have a smooth density. Implementation via the EM algorithm is described, and performance and the benefits for uncovering noteworthy features are illustrated by application to data from an HIV clinical trial and by simulation.
引用
收藏
页码:742 / 753
页数:12
相关论文
共 50 条
  • [1] A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data
    Ye, Wen
    Lin, Xihong
    Taylor, Jeremy M. G.
    STATISTICS AND ITS INTERFACE, 2008, 1 (01) : 33 - 45
  • [2] H-likelihood approach for joint modeling of longitudinal outcomes and time-to-event data
    Ha, Il Do
    Noh, Maengseok
    Lee, Youngjo
    BIOMETRICAL JOURNAL, 2017, 59 (06) : 1122 - 1143
  • [3] Joint Modeling of Longitudinal and Time-to-Event Data
    Jacqmin-Gadda, Helene
    BIOMETRICS, 2018, 74 (01) : 383 - 384
  • [4] Joint modeling of longitudinal and time-to-event data: An overview
    Tsiatis, AA
    Davidian, M
    STATISTICA SINICA, 2004, 14 (03) : 809 - 834
  • [5] Editorial "Joint modeling of longitudinal and time-to-event data and beyond"
    Suarez, Carmen Cadarso
    Klein, Nadja
    Kneib, Thomas
    Molenberghs, Geert
    Rizopoulos, Dimitris
    BIOMETRICAL JOURNAL, 2017, 59 (06) : 1101 - 1103
  • [6] Semiparametric normal transformation joint model of multivariate longitudinal and bivariate time-to-event data
    Tang, An-Ming
    Peng, Cheng
    Tang, Niansheng
    STATISTICS IN MEDICINE, 2023, 42 (29) : 5491 - 5512
  • [7] FITTING JOINT MODELING OF LONGITUDINAL AND TIME-TO-EVENT DATA USING STOCHASTIC EM APPROACH
    Sabry, Dina M.
    Gad, Ahmed M.
    Mohamed, Ramadan H.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 64 (01) : 33 - 62
  • [8] A semiparametric Bayesian approach for joint modeling of longitudinal trait and event time
    Das, Kiranmoy
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (15) : 2850 - 2865
  • [9] Jointly modeling time-to-event and longitudinal data: a Bayesian approach
    Huang, Yangxin
    Hu, X. Joan
    Dagne, Getachew A.
    STATISTICAL METHODS AND APPLICATIONS, 2014, 23 (01): : 95 - 121
  • [10] Jointly modeling time-to-event and longitudinal data: a Bayesian approach
    Yangxin Huang
    X. Joan Hu
    Getachew A. Dagne
    Statistical Methods & Applications, 2014, 23 : 95 - 121