Ship Deck Segmentation Using an Attention Based Generative Adversarial Network

被引:1
作者
He, Joanna [1 ]
Uddin, Mohammad Shahab [4 ]
Canan, Mustafa [3 ]
Sousa-Poza, Andres [2 ]
Kovacic, Samuel [2 ]
Li, Jiang [4 ]
机构
[1] Ocean Lakes High Sch, Math & Sci Acad, Virginia Beach, VA USA
[2] Old Dominion Univ, Dept Engn Management Syst Engn, Norfolk, VA USA
[3] Naval Postgraduate Sch, Dept Informat Sci, Monterey, CA USA
[4] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA USA
来源
2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON) | 2022年
关键词
Image segmentation; generative adversarial network; deep learning; attention network;
D O I
10.1109/UEMCON54665.2022.9965690
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we proposed an attention-based generative adversarial network (GAN) model to clean low quality, noisy engineering documents of ship decks provided by the Military Sealift Command (MSC). We proposed four loss functions and optimized the hyperparameters associated with the model and found that each of the parameters had significant influence on the model performance. We trained the proposed model with 154 MSC noisy/clean image pairs with different parameter combinations and applied the trained model to 9 MSC images to identify the best parameter combination. Experiment results show that the proposed model could achieve good results with the limited dataset and the cleaned documents can be used for 3D modeling of ships that will revolutionize ship maintenance.
引用
收藏
页码:367 / 372
页数:6
相关论文
共 18 条
[1]  
Csurka G., 2018, P BRIT MACHINE VISIO, V26
[2]  
D. of Defense, 2018, DIG ENG STRAT
[3]  
Dodge S, 2017, PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, P358, DOI 10.23919/MVA.2017.7986875
[4]   MapSegNet: A Fully Automated Model Based on the Encoder-Decoder Architecture for Indoor Map Segmentation [J].
Foroughi, Farzin ;
Wang, Jikai ;
Nemati, Alireza ;
Chen, Zonghai ;
Pei, Haoyuan .
IEEE ACCESS, 2021, 9 :101530-101542
[5]  
Goodfellow I., 2014, ADV NEUR IN, V27, P2672, DOI DOI 10.1145/3422622
[6]  
Khallouli W, 2022, 2022 IEEE WORLD AI IOT CONGRESS (AIIOT), P15, DOI [10.1109/AIIOT54504.2022.9817319, 10.1109/AIIoT54504.2022.9817319]
[7]   A Fuzzy Rule-based System using a Patch-based Approach for Semantic Segmentation in Floor Plans [J].
Leon-Garza, Hugo ;
Hagras, Hani ;
Pena-Rios, Anasol ;
Conway, Anthony ;
Owusu, Gilbert .
IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
[8]   Raster-to-Vector: Revisiting Floorplan Transformation [J].
Liu, Chen ;
Wu, Jiajun ;
Kohli, Pushmeet ;
Furukawa, Yasutaka .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2214-2222
[9]  
Lv X., INPROCEEDINGS IEEECV, P16717
[10]  
Rabadi G., 2020, INT J SYSTEM SYSTEMS, V10, P1, DOI [10.1504/IJSSE.2020.10031364, DOI 10.1504/IJSSE.2020.10031364]