Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries

被引:126
作者
Kubiak, P. [1 ]
Pfanzelt, M. [1 ]
Geserick, J. [2 ]
Hoermann, U. [3 ]
Huesing, N. [2 ]
Kaiser, U. [3 ]
Wohlfahrt-Mehrens, M. [1 ]
机构
[1] ZSW Ctr Solar Energy & Hydrogen Res, D-89081 Ulm, Germany
[2] Univ Ulm, Inst Inorgan Chem 1, D-89081 Ulm, Germany
[3] Univ Ulm, Electron Microscopy Grp Mat Sci, D-89081 Ulm, Germany
关键词
TiO2; Rutile; Anode material; Lithium ion battery; NANOCRYSTALLINE ANATASE; TEMPERATURE SYNTHESIS; NANO-IONICS; LITHIUM; PERFORMANCE; INSERTION; INTERCALATION; ADSORPTION; MORPHOLOGY; DIFFUSION;
D O I
10.1016/j.jpowsour.2009.06.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanosized rutile TiO2 has been prepared by sol-gel chemistry from a glycerol-modified titanium precursor in the presence of an anionic surfactant. The sample has been characterized by X-ray diffraction, nitrogen sorption, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and electrochemical tests. Nanosized rutile TiO2 has been electrochemically investigated using two potential windows: 1.2-3 V and 1-3 V. It exhibits excellent high rates capabilities and good cycling stability. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1099 / 1104
页数:6
相关论文
共 50 条
  • [41] TiO2 Nanotubular Arrays as Anode Materials for Li-Ion Batteries
    Gavrilin, Ilya
    Savchuk, Timofey
    Dronov, Alexey
    Kulova, Tatiana
    PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, : 1394 - 1396
  • [42] Electrochemical properties of rutile TiO2 nanorods as anode material for lithium-ion batteries
    Qiao, Hui
    Luo, Qiaohui
    Wei, Qufu
    Cai, Yibing
    Huang, Fenglin
    IONICS, 2012, 18 (07) : 667 - 672
  • [43] TiO2 (B) anode for high-voltage aqueous Li-ion batteries
    Zhou, Anxing
    Liu, Yuan
    Zhu, Xiangzhen
    Li, Xinyan
    Yue, Jinming
    Ma, Xianguo
    Gu, Lin
    Hu, Yong-Sheng
    Li, Hong
    Huang, Xuejie
    Chen, Liquan
    Suo, Liumin
    ENERGY STORAGE MATERIALS, 2021, 42 : 438 - 444
  • [44] Mechanism of Li+/Electron Conductivity in Rutile and Anatase TiO2 Nanoparticles
    Sushko, Maria L.
    Rosso, Kevin M.
    Liu, Jun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (47) : 20277 - 20283
  • [45] Preparation and electrochemical properties of SiO2-non-graphitizable carbon composites as negative electrode materials for Li-ion batteries
    Doi, Takayuki
    Tagashira, Masao
    Iriyama, Yasutoshi
    Abe, Takeshi
    Ogumi, Zempachi
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2012, 42 (02) : 69 - 74
  • [46] Nanoarchitectured TiO2/SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries?
    Ortiz, Gregorio F.
    Hanzu, Ilie
    Lavela, Pedro
    Knauth, Philippe
    Tirado, Jose L.
    Djenizian, Thierry
    CHEMISTRY OF MATERIALS, 2010, 22 (05) : 1926 - 1932
  • [47] Electrochemical Impedance Spectroscopy response study of a commercial graphite-based negative electrode for Li-ion batteries as function of the cell state of charge and ageing
    Gordon, I. A. Jimenez
    Grugeon, S.
    Takenouti, H.
    Tribollet, B.
    Armand, M.
    Davoisne, C.
    Debart, A.
    Laruelle, S.
    ELECTROCHIMICA ACTA, 2017, 223 : 63 - 73
  • [48] Isothermal Calorimetry Evaluation of Metallurgical Silicon as a Negative Electrode Material for Li-Ion Batteries
    Chevrier, V. L.
    Yan, Zilai
    Glazier, Stephen L.
    Obrovac, M. N.
    Krause, L. J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (03)
  • [49] Hyperbranched Polyphenylene as an Electrode for Li-Ion Batteries
    Lobo, Laurel Simon
    Matsumoto, Kazuya
    Jikei, Mitsutoshi
    Ikeda, Shun
    Okawa, Hirokazu
    ENERGY TECHNOLOGY, 2021, 9 (10)
  • [50] Anatase TiO2 nanoparticles for lithium-ion batteries
    El-Deen, S. S.
    Hashem, A. M.
    Ghany, A. E. Abdel
    Indris, S.
    Ehrenberg, H.
    Mauger, A.
    Julien, C. M.
    IONICS, 2018, 24 (10) : 2925 - 2934