Gap-Induced Giant Third-Order Optical Nonlinearity and Long Electron Relaxation Time in Random-Distributed Gold Nanorod Arrays

被引:14
作者
Wang, Xia [1 ]
Yao, Linhua [2 ,3 ]
Chen, Xiaodie [2 ,3 ]
Dai, Hongwei [2 ,3 ]
Wang, Mingshan [2 ,3 ]
Zhang, Luman [2 ,3 ]
Ni, Yun [1 ]
Xiao, Lixia [1 ]
Han, Jun-Bo [2 ,3 ]
机构
[1] Wenhua Coll, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
关键词
gold nanorods; surface plasmon resonance; local field enhancement; third-order optical nonlinearity; hot electron relaxations; AU TRIANGULAR NANOPRISM; 2ND-HARMONIC GENERATION; FANO RESONANCE; PLASMON RESONANCE; NON LINEARITY; ENHANCEMENT; DIPOLE;
D O I
10.1021/acsami.9b08935
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The third-order optical nonlinearities and the hot electron relaxation time (tau) of random-distributed gold nanorods arrays on glass (R-GNRA) have been investigated by using Z-scan and optical Kerr effect (OKE) techniques. Large third-order optical susceptibility (chi((3))) with the value of 2.5 x 10(-6) esu has been obtained around the plamsonic resonance peak under the excitation power intensity of 0.1 GW/cm(2). Further decrease of the excitation power intensity down to 0.3 MW/cm(2) will lead to the significant increase of chi((3)) up to 6.4 X 10(-4) esu. The OKE results show that the relaxation time of R-GNRA around the plasmonic peak is 13.9 +/- 0.4 ps, which is more than 4 times longer than those of the individual gold nanostructures distributed in water solutions. The Finite-difference time domain simulations demonstrate that this large enhancement of chi((3)) and slow down of tau are caused by the gap-induced large local field enhancement of GNRs dimers in R-GNRA. These significant results offer great opportunities for plasmonic nanostructures in applications of photonic and photocatalytic devices.
引用
收藏
页码:32469 / 32474
页数:6
相关论文
共 40 条
[31]   Plasmon-Enhanced Second-Harmonic Generation Nanorulers with Ultrahigh Sensitivities [J].
Shen, Shaoxin ;
Meng, Lingyan ;
Zhang, Yuejiao ;
Han, Junbo ;
Ma, Zongwei ;
Hu, Shu ;
He, Yuhan ;
Li, Jianfeng ;
Ren, Bin ;
Shih, Tien-Mo ;
Wang, Zhaohui ;
Yang, Zhilin ;
Tian, Zhongqun .
NANO LETTERS, 2015, 15 (10) :6716-6721
[32]   Enhanced Second Harmonic Generation by Photonic-Plasmonic Fano-Type Coupling in Nanoplasmonic Arrays [J].
Walsh, Gary F. ;
Dal Negro, Luca .
NANO LETTERS, 2013, 13 (07) :3111-3117
[33]   Universal Scaling and Fano Resonance in the Plasmon Coupling between Gold Nanorods [J].
Woo, Kat Choi ;
Shao, Lei ;
Chen, Huanjun ;
Liang, Yao ;
Wang, Jianfang ;
Lin, Hai-Qing .
ACS NANO, 2011, 5 (07) :5976-5986
[34]   Magnetic Fano resonance-induced second-harmonic generation enhancement in plasmonic metamolecule rings [J].
Yang, Da-Jie ;
Im, Song-Jin ;
Pan, Gui-Ming ;
Ding, Si-Jing ;
Yang, Zhong-Jian ;
Hao, Zhong-Hua ;
Zhou, Li ;
Wang, Qu-Quan .
NANOSCALE, 2017, 9 (18) :6068-6075
[35]   Plasmonic Fano resonances in metallic nanorod complexes [J].
Yang, Zhong-Jian ;
Hao, Zhong-Hua ;
Lin, Hai-Qing ;
Wang, Qu-Quan .
NANOSCALE, 2014, 6 (10) :4985-4997
[36]   Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure [J].
Yao, Lin-Hua ;
Zhang, Jun-Pei ;
Dai, Hong-Wei ;
Wang, Ming-Shan ;
Zhang, Lu-Man ;
Wang, Xia ;
Han, Jun-Bo .
NANOSCALE, 2018, 10 (26) :12695-12703
[37]   Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids [J].
Yu, Ying ;
Fan, Shan-Shan ;
Dai, Hong-Wei ;
Ma, Zong-Wei ;
Wang, Xia ;
Han, Jun-Bo ;
Li, Liang .
APPLIED PHYSICS LETTERS, 2014, 105 (06)
[38]   Nonlinear optical properties of Au-Ag core-shell nanorods for all-optical switching [J].
Zhang, Luman ;
Dai, Hongwei ;
Wang, Xia ;
Yao, Linhua ;
Ma, Zongwei ;
Han, Jun-Bo .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (35)
[39]   Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation [J].
Zhang, Shi ;
Li, Guan-Can ;
Chen, Yiqin ;
Zhu, Xupeng ;
Liu, Shao-Ding ;
Lei, Dang Yuan ;
Duan, Huigao .
ACS NANO, 2016, 10 (12) :11105-11114
[40]   Quantum plasmonics get applied [J].
Zhou, Zhang-Kai ;
Liu, Jingfeng ;
Bao, Yanjun ;
Wu, Lin ;
Png, Ching Eng ;
Wang, Xue-Hua ;
Qi, Cheng-Wei .
PROGRESS IN QUANTUM ELECTRONICS, 2019, 65 :1-20