Importance of the carboxyl terminus of FAT/CD36 for plasma membrane localization and function in long-chain fatty acid uptake

被引:38
作者
Eyre, Nicholas S.
Cleland, Leslie G.
Tandon, Narendra N.
Mayrhofer, Graham [1 ]
机构
[1] Univ Adelaide, Sch Mol & Biomed Sci, Adelaide, SA 5005, Australia
[2] Hanson Inst Med Res, Inst Med & Vet Sci, Arthrit Res Lab, Adelaide, SA, Australia
[3] Otsuka Maryland Med Labs, Thrombosis Res Lab, Rockville, MD USA
关键词
fatty acid translocase; lipid rafts; caveolae; caveolin-1; detergent-resistant membranes; oleate; oleic acid; liver;
D O I
10.1194/jlr.M600255-JLR200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study investigates the role of the cytoplasmic C terminus of fatty acid translocase (FAT/CD36) in localization of the molecule to the plasma membrane, its misertion into lipid rafts, and its ability to enhance long-chain fatty acid uptake in transfected H4IIE rat hepatoma cells. In these cells, wild-type FAT/CD36 is localized to both lipid raft and nonraft domains of the plasma membrane. Interestingly, a FAT/CD36 truncation mutant lacking the final 10 amino acids of the cytoplasmic C terminus was retained within the cell in detergent-resistant membranes, and unlike wild-type FAT/CD36, it did not enhance oleate uptake. Furthermore, expression of FAT/CD36 in these cells increased the incorporation of oleate into diacylglycerol, a property that was not shared by truncated FAT/CD36. To examine whether the C terminus itself has an intrinsic ability to dictate the plasma membrane localization of FAT/CD36, this region was fused in-frame to enhanced green fluorescent protein (EGFP). This domain was sufficient to attach EGFP to cellular membranes, suggesting an involvement in the intracellular traffic of the molectde. We conclude that the C terminus of FAT/CD36 is required for localization of the receptor to the cell surface and its ability to enhance cellular oleate uptake.
引用
收藏
页码:528 / 542
页数:15
相关论文
共 56 条
[1]  
ABUMRAD NA, 1993, J BIOL CHEM, V268, P17665
[2]   CD36 in myocytes channels fatty acids to a lipase-accessible triglyceride pool that is related to cell lipid and insulin responsiveness [J].
Bastie, CC ;
Hajri, T ;
Drover, VA ;
Grimaldi, PA ;
Abumrad, NA .
DIABETES, 2004, 53 (09) :2209-2216
[3]   Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation [J].
Bezaire, V ;
Bruce, CR ;
Heigenhauser, GJF ;
Tandon, NN ;
Glatz, JFC ;
Luiken, JJJF ;
Bonen, A ;
Spriet, LL .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2006, 290 (03) :E509-E515
[4]   Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase [J].
Bonen, A ;
Luiken, JJFP ;
Arumugam, Y ;
Glatz, JFC ;
Tandon, NN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (19) :14501-14508
[5]   Muscle-contractile activity increases fatty acid metabolism and transport and FAT/CD36 [J].
Bonen, A ;
Dyck, DJ ;
Ibrahimi, A ;
Abumrad, NA .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 276 (04) :E642-E649
[6]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[7]   A novel function for fatty acid translocase (FAT)/CD36 - Involvement in long chain fatty acid transfer into the mitochondria [J].
Campbell, SE ;
Tandon, NN ;
Woldegiorgis, G ;
Luiken, JJFP ;
Glatz, JFC ;
Bonen, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (35) :36235-36241
[8]   Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice [J].
Coburn, CT ;
Knapp, FF ;
Febbraio, M ;
Beets, AL ;
Silverstein, RL ;
Abumrad, NA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32523-32529
[9]   A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism [J].
Febbraio, M ;
Abumrad, NA ;
Hajjar, DP ;
Sharma, K ;
Cheng, WL ;
Pearce, SFA ;
Silverstein, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (27) :19055-19062
[10]   CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism [J].
Febbraio, M ;
Hajjar, DP ;
Silverstein, RL .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (06) :785-791