Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities

被引:142
|
作者
Bombardelli, Mea [1 ]
Varosanec, Sanja [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
Convex function; h-convex function; Hermite-Hadamard-Fejer inequalities; Mean of order p; p-logarithmic mean;
D O I
10.1016/j.camwa.2009.07.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the Hermite-Hadamard-Fejer inequalities for an h-convex function and we point out the results for some special classes of functions. Also, some generalization of the Hermite-Hadamard inequalities and some properties of functions H and F which are naturally joined to the h-convex function are given. Finally, applications on p-logarithmic mean and mean of the order p are obtained. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1869 / 1877
页数:9
相关论文
共 50 条
  • [1] ON SOME HERMITE-HADAMARD-FEJER INEQUALITIES FOR (k, h)-CONVEX FUNCTIONS
    Micherda, Bartosz
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 931 - 940
  • [2] Some New Hermite-Hadamard-Fejer Fractional Type Inequalities for h-Convex and Harmonically h-Convex Interval-Valued Functions
    Kalsoom, Humaira
    Latif, Muhammad Amer
    Khan, Zareen A.
    Vivas-Cortez, Miguel
    MATHEMATICS, 2022, 10 (01)
  • [3] On Fejer and Hermite-Hadamard type Inequalities involving h-Convex Functions and Applications
    Obeidat, Sofian
    Latif, Muhammad Amer
    Dragomir, Sever Silvestru
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (06): : 1 - 18
  • [4] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [5] Conformable integral version of Hermite-Hadamard-Fejer inequalities via η-convex functions
    Khurshid, Yousaf
    Khan, Muhammad Adil
    Chu, Yu-Ming
    AIMS MATHEMATICS, 2020, 5 (05): : 5106 - 5120
  • [6] FEJER AND HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE h-CONVEX AND QUASI CONVEX FUNCTIONS WITH APPLICATIONS
    OBEIDAT, S. O. F. I. A. N.
    LATIF, M. A.
    DRAGOMIR, S. S.
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 401 - 415
  • [7] ON NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR HARMONICALLY QUASI CONVEX FUNCTIONS
    Turhan, Sercan
    Iscan, Imdat
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 734 - 749
  • [8] New Hermite-Hadamard-Fejer type inequalities for GA-convex functions
    Maden, Selahattin
    Turhan, Sercan
    Iscan, Imdat
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [9] On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals
    Set, Erhan
    Iscan, Imdat
    Sarikaya, M. Zeki
    Ozdemir, M. Emin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 875 - 881
  • [10] On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions
    Barsam, Hasan
    Mirzadeh, Somayeh
    Sayyari, Yamin
    Ciurdariu, Loredana
    FRACTAL AND FRACTIONAL, 2025, 9 (02)