Graphs with the edge metric dimension smaller than the metric dimension

被引:37
作者
Knor, Martin [1 ]
Majstorovic, Snjezana [2 ]
Toshi, Aoden Teo Masa
Skrekovski, Riste [3 ,4 ]
Yero, Ismael G. [5 ]
机构
[1] Slovak Univ Technol Bratislava, Bratislava, Slovakia
[2] Univ Osijek, Dept Math, Osijek, Croatia
[3] Univ Ljubljana, FMF, Ljubljana 1000, Slovenia
[4] Fac Informat Studies, Novo Mesto 8000, Slovenia
[5] Univ Cadiz, Dept Matemat, Algeciras, Spain
关键词
Edge metric dimension; Metric dimension; Unicyclic graphs;
D O I
10.1016/j.amc.2021.126076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a connected graph G, the metric (resp. edge metric) dimension of G is the cardinality of the smallest ordered set of vertices that uniquely identifies every pair of distinct vertices (resp. edges) of G by means of distance vectors to such a set. In this work, we settle three open problems on (edge) metric dimension of graphs. Specifically, we show that for every r, t >= 2 with r not equal t, there is n(0), such that for every n >= n(0) there exists a graph G of order n with metric dimension rand edge metric dimension t, which among other consequences, shows the existence of infinitely many graph whose edge metric dimension is strictly smaller than its metric dimension. In addition, we also prove that it is not possible to bound the edge metric dimension of a graph G by some constant factor of the metric dimension of G. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:7
相关论文
共 13 条
[1]  
Blumenthal L., 1953, Theory and applications of distance geometry.
[2]   Edge Metric Dimension of Some Generalized Petersen Graphs [J].
Filipovic, Vladimir ;
Kartelj, Aleksandar ;
Kratica, Jozef .
RESULTS IN MATHEMATICS, 2019, 74 (04)
[3]   Metric dimension and pattern avoidance in graphs [J].
Geneson, Jesse .
DISCRETE APPLIED MATHEMATICS, 2020, 284 :1-7
[4]  
Harary R. A., 1976, Ars Comb, V2, P191
[5]   Uniquely identifying the edges of a graph: The edge metric dimension [J].
Kelenc, Aleksander ;
Tratnik, Niko ;
Yero, Ismael G. .
DISCRETE APPLIED MATHEMATICS, 2018, 251 :204-220
[6]   Edge Version of Metric Dimension and Doubly Resolving Sets of the Necklace Graph [J].
Liu, Jia-Bao ;
Zahid, Zohaib ;
Nasir, Ruby ;
Nazeer, Waqas .
MATHEMATICS, 2018, 6 (11)
[7]  
Nasir R, 2019, ARS COMBINATORIA, V147, P143
[8]   Edge Metric Dimension of Some Graph Operations [J].
Peterin, Iztok ;
Yero, Ismael G. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) :2465-2477
[9]   On metric generators of graphs [J].
Sebó, A ;
Tannier, E .
MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (02) :383-393
[10]  
Slater P. J., 1975, P 6 SE C COMB GRAPH, V14, P549