共 50 条
Understanding the influence of capillary waves on solvation at the liquid-vapor interface
被引:8
|作者:
Rane, Kaustubh
[1
]
van der Vegt, Nico F. A.
机构:
[1] Tech Univ Darmstadt, Eduard Zintl Inst Anorgan & Phys Chem, Alarich Weiss Str 10, D-64287 Darmstadt, Germany
关键词:
ENERGY-ENTROPY COMPENSATION;
STATISTICAL-MECHANICS;
ENTHALPY-ENTROPY;
WATER;
THERMODYNAMICS;
SURFACE;
BEHAVIOR;
SOLUTES;
TOPICS;
FORCE;
D O I:
10.1063/1.4943781
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
This work investigates the question if surface capillary waves (CWs) affect interfacial solvation thermodynamic properties that determine the propensity of small molecules toward the liquid-vapor interface. We focus on (1) the evaluation of these properties from molecular simulations in a practical manner and (2) understanding them from the perspective of theories in solvation thermodynamics, especially solvent reorganization effects. Concerning the former objective, we propose a computational method that exploits the relationship between an external field acting on the liquid-vapor interface and the magnitude of CWs. The system considered contains the solvent, an externally applied field (f) and the solute molecule fixed at a particular location. The magnitude of f is selected to induce changes in CWs. The difference between the solvation free energies computed in the presence and in the absence of f is then shown to quantify the contribution of CWs to interfacial solvation. We describe the implementation of this method in the canonical ensemble by using a Lennard-Jones solvent and a non-ionic solute. Results are shown for three types of solutes that differ in the nature of short-ranged repulsive (hard-core) interactions. Overall, we observe that CWs have a negligible or very small effect on the interfacial solvation free energy of a solute molecule fixed near the liquid-vapor interface for the above systems. We also explain how the effects of pinning or dampening of CWs caused by a fixed solute are effectively compensated and do not contribute to the solvation free energy. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:11
相关论文