Nonlocal symmetries, exact solutions and conservation laws of the coupled Hirota equations

被引:27
作者
Xin, Xiangpeng [1 ]
Liu, Yutang [1 ]
Liu, Xiqiang [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal symmetry; Exact solution; Nonlocal conservation laws;
D O I
10.1016/j.aml.2015.11.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the Lax pair, nonlocal symmetries of the coupled Hirota equations are obtained. By introducing an appropriate auxiliary dependent variable, the nonlocal symmetries are successfully localized to Lie point symmetries. With the help of Lie symmetries of the closed prolongation, exact solutions and nonlocal conservation laws of the coupled Hirota equations are studied. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 23 条
  • [1] NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    [J]. PHYSICAL REVIEW LETTERS, 1973, 31 (02) : 125 - 127
  • [2] Direct construction method for conservation laws of partial differential equations - Part I: Examples of conservation law classifications
    Anco, SC
    Bluman, G
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 : 545 - 566
  • [3] Bluman GW., 2010, Applications of Symmetry Methods to Partial Differential Equations, DOI [10.1007/978-0-387-68028-6, DOI 10.1007/978-0-387-68028-6]
  • [4] Nonlocal symmetry constraints and exact interaction solutions of the (2+1) dimensional modified generalized long dispersive wave equation
    Chen, Junchao
    Chen, Yong
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (03) : 454 - 472
  • [5] NEW NONLOCAL SYMMETRIES WITH PSEUDOPOTENTIALS
    GALAS, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (15): : L981 - L986
  • [6] Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation
    Hu, Xiao-Rui
    Lou, Sen-Yue
    Chen, Yong
    [J]. PHYSICAL REVIEW E, 2012, 85 (05):
  • [7] Nonlocal symmetry and soliton-cnoidal wave solutions of the Bogoyavlenskii coupled KdV system
    Hu, Xiaorui
    Li, Yuqi
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 51 : 20 - 26
  • [8] Ibragimov N. H., 1985, TRANSFORMATION GROUP
  • [9] Ibragimov N.K, 1991, J. Sov. Math., V55, P1401
  • [10] A new conservation theorem
    Ibragimov, Nail H.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 311 - 328