Relative abundance and structure of chaotic behavior: The nonpolynomial Belousov-Zhabotinsky reaction kinetics

被引:41
作者
Freire, Joana G. [1 ,2 ]
Field, Richard J. [3 ]
Gallas, Jason A. C. [1 ,4 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Lisbon, Ctr Estruturas Lineares & Combinatorias, P-1649003 Lisbon, Portugal
[3] Univ Montana, Dept Chem, Missoula, MT 59812 USA
[4] ETH Honggerberg, Rechnergestutzte Phys Werkstoffe IfB, CH-8093 Zurich, Switzerland
关键词
chaos; chemical equilibrium; chemical reactions; Lyapunov methods; nonlinear dynamical systems; reaction kinetics theory; PARAMETER-SPACE; DETERMINISTIC CHAOS; CHEMICAL-REACTION; HENON-MAP; OSCILLATIONS; SYSTEMS; MODEL;
D O I
10.1063/1.3168400
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a detailed numerical investigation of the relative abundance of periodic and chaotic oscillations in phase diagrams for the Belousov-Zhabotinsky (BZ) reaction as described by a nonpolynomial, autonomous, three-variable model suggested by Gyoumlrgyi and Field [Nature (London) 355, 808 (1992)]. The model contains 14 parameters that may be tuned to produce rich dynamical scenarios. By computing the Lyapunov spectra, we find the structuring of periodic and chaotic phases of the BZ reaction to display unusual global patterns, very distinct from those recently found for gas and semiconductor lasers, for electric circuits, and for a few other familiar nonlinear oscillators. The unusual patterns found for the BZ reaction are surprisingly robust and independent of the parameter explored.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Self-similar structures in a 2D parameter-space of an inductorless Chua's circuit [J].
Albuquerque, Holokx A. ;
Rubinger, Rero M. ;
Rech, Paulo C. .
PHYSICS LETTERS A, 2008, 372 (27-28) :4793-4798
[2]  
[Anonymous], SCHOLARPEDIA J, DOI [DOI 10.4249/scholarpedia.1386, 10.10.1038/nphys1170, DOI 10.1038/NPHYS1170, DOI 10.4249/SCHOLARPEDIA.1386]
[3]  
BELOUSOV B.P., 1985, Oscillations and traveling waves in chemical systems
[4]   Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser -: art. no. 143905 [J].
Bonatto, C ;
Garreau, JC ;
Gallas, JAC .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[5]   Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator [J].
Bonatto, Cristian ;
Gallas, Jason A. C. ;
Ueda, Yoshisuke .
PHYSICAL REVIEW E, 2008, 77 (02)
[6]   Accumulation horizons and period adding in optically injected semiconductor lasers [J].
Bonatto, Cristian ;
Gallas, Jason A. C. .
PHYSICAL REVIEW E, 2007, 75 (05)
[7]   Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators [J].
Bonatto, Cristian ;
Gallas, Jason Alfredo Carlson .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1865) :505-517
[8]   Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit [J].
Bonatto, Cristian ;
Gallas, Jason A. C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[9]   Nonlinear stiffness, Lyapunov exponents, and attractor dimension [J].
Cartwright, JHE .
PHYSICS LETTERS A, 1999, 264 (04) :298-302
[10]   Characterization of the Rossler system in parameter space [J].
Castro, Victor ;
Monti, Marco ;
Pardo, William B. ;
Walkenstein, Jonathan A. ;
Rosa, Epaminondas, Jr. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (03) :965-973