Existence and approximation of solutions to fractional differential equations

被引:56
作者
Muslim, M. [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Fractional differential equations; Mild solution; Banach fixed point theorem; Analytic semigroup; Faedo-Galerkin approximations; EVOLUTION-EQUATIONS;
D O I
10.1016/j.mcm.2008.07.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we shall study a fractional order semilinear differential equation in an arbitrary Banach space X : We used the analytic semigroup theory of linear operators and fixed point method to establish the existence and uniqueness of solutions of the given problem. We also prove the existence of a global solution. Existence and convergence of an approximate solution to the given problem is also proved in a separable Hilbert space. Finally, we give an example to illustrate the applications of the abstract results. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1164 / 1172
页数:9
相关论文
共 18 条
[1]  
[Anonymous], FUNKCIAL EKVAC
[2]  
Bahuguna D., 2004, ELECT J DIFFERENTIAL, V136, P1
[3]  
Bahuguna D, 2006, Nonlinear Dyn Syst Theory, V6, P63
[4]  
Bazley N. W., 1979, Nonlinear Analysis Theory, Methods & Applications, V3, P539, DOI 10.1016/0362-546X(79)90071-3
[5]  
Bazley N.W., 1980, Nonlinear Anal. TMA, V4, P503
[6]   Analysis of a system of fractional differential equations [J].
Daftardar-Gejji, V ;
Babakhani, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :511-522
[7]   Some probability densities and fundamental solutions of fractional evolution equations [J].
El-Borai, MM .
CHAOS SOLITONS & FRACTALS, 2002, 14 (03) :433-440
[8]   Fractional-order evolutionary integral equations [J].
El-Sayed, AMA .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 98 (2-3) :139-146
[9]   ON THE FRACTIONAL DIFFERENTIAL-EQUATIONS [J].
ELSAYED, AMA .
APPLIED MATHEMATICS AND COMPUTATION, 1992, 49 (2-3) :205-213
[10]  
Gothel R, 1984, Math Methods Appl Sci, V6, P41