Thematic Review Series: High Density Lipoprotein Structure, Function, and Metabolism Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond

被引:290
作者
Shah, Amy S. [1 ]
Tan, Lirong [2 ]
Long, Jason Lu [2 ]
Davidson, W. Sean [3 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Endocrinol, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp Res Fdn, Div Biomed Informat, Cincinnati, OH USA
[3] Univ Cincinnati, Ctr Lipid & Arteriosclerosis Sci, Cincinnati, OH 45221 USA
关键词
mass spectrometry; function; apolipoproteins; complement; protease inhibition; inflammation; innate immunity; lipid metabolism; hemostasis; APOLIPOPROTEIN-A-I; CHOLESTEROL EFFLUX CAPACITY; PHOSPHOLIPID TRANSFER PROTEIN; ALTERS HDL COMPOSITION; ACUTE-PHASE RESPONSE; HUMAN-PLASMA; HUMAN-SERUM; MASS-SPECTROMETRY; INNATE IMMUNITY; GEL-ELECTROPHORESIS;
D O I
10.1194/jlr.R035725
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent applications of mass spectrometry technology have dramatically increased our understanding of the proteomic diversity of high density lipoproteins (HDL). Depending on the method of HDL isolation, upwards of 85 proteins have been identified, and the list continues to grow. In addition to proteins consistent with traditionally accepted roles in lipid transport, HDL carries surprising constituents, such as members of the complement pathway, protease inhibitors involved in hemostasis, acute-phase response proteins, immune function mediators, and even metal-binding proteins. This compositional diversity fits well with hundreds of studies demonstrating a wide functional pleiotrophy, including roles in lipid transport, oxidation, inflammation, hemostasis, and immunity. This review summarizes the progression of our understanding of HDL proteomic complexity and points out key experimental observations that reinforce the functional diversity of HDL. The possibility of specific HDL subspecies with distinct functions, the evidence supporting this concept, and some of the best examples of experimentally defined HDL subspecies are also discussed. Finally, key challenges facing the field are highlighted, particularly the need to identify and define the function of HDL subspecies to better inform attempts to pharmacologically manipulate HDL for the benefit of cardiovascular disease and possibly other maladies.-Shah, A. S., L. Tan, J. L. Long, and W. S. Davidson. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond.
引用
收藏
页码:2575 / 2585
页数:11
相关论文
共 109 条
[1]   The roles of different pathways in the release of cholesterol from macrophages [J].
Adorni, Maria Pia ;
Zimetti, Francesca ;
Billheimer, Jeffrey T. ;
Wang, Nan ;
Rader, Daniel J. ;
Phillips, Michael C. ;
Rothblat, George H. .
JOURNAL OF LIPID RESEARCH, 2007, 48 (11) :2453-2462
[2]   The HDL proteome in acute coronary syndromes shifts to an inflammatory profile [J].
Alwaili, Khalid ;
Bailey, Dana ;
Awan, Zuhier ;
Bailey, Swneke D. ;
Ruel, Isabelle ;
Hafiane, Anouar ;
Krimbou, Larbi ;
Laboissiere, Sylvie ;
Genest, Jacques .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2012, 1821 (03) :405-415
[3]   The heparin heparan sulfate-binding site on apo serum amyloid A - Implications for the therapeutic intervention of amyloidosis [J].
Ancsin, JB ;
Kisilevsky, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (11) :7172-7181
[4]   Myeloperoxidase and serum amyloid A contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group IIA secretory phospholipase A2 [J].
Annema, Wijtske ;
Nijstad, Niels ;
Toelle, Markus ;
de Boer, Jan Freark ;
Buijs, Ruben V. C. ;
Heeringa, Peter ;
van der Giet, Markus ;
Tietge, Uwe J. F. .
JOURNAL OF LIPID RESEARCH, 2010, 51 (04) :743-754
[5]   Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment [J].
Ansell, BJ ;
Navab, M ;
Hama, S ;
Kamranpour, N ;
Fonarow, G ;
Hough, G ;
Rahmani, S ;
Mottahedeh, R ;
Dave, R ;
Reddy, ST ;
Fogelman, AM .
CIRCULATION, 2003, 108 (22) :2751-2756
[6]   Role of serum amyloid A during metabolism of acute-phase HDL by macrophages [J].
Artl, A ;
Marsche, G ;
Lestavel, S ;
Sattler, W ;
Malle, E .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2000, 20 (03) :763-772
[7]   High-density lipoprotein subpopulations in pathologic conditions [J].
Asztalos, BF ;
Schaefer, EJ .
AMERICAN JOURNAL OF CARDIOLOGY, 2003, 91 (7A) :12E-17E
[8]   Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities - Selective action of human paraoxonase allozymes Q and R [J].
Aviram, M ;
Billecke, S ;
Sorenson, R ;
Bisgaier, C ;
Newton, R ;
Rosenblat, M ;
Erogul, J ;
Hsu, C ;
Dunlop, C ;
La Du, B .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1998, 18 (10) :1617-1624
[9]   PLASMA-LIPOPROTEINS AFFECT PLATELET MALONDIALDEHYDE AND THROMBOXANE B-2 PRODUCTION [J].
AVIRAM, M ;
SIRTORI, CR ;
COLLI, S ;
MADERNA, P ;
MORAZZONI, G ;
TREMOLI, E .
BIOCHEMICAL MEDICINE, 1985, 34 (01) :29-36
[10]   Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions - A possible peroxidative role for paraoxonase [J].
Aviram, M ;
Rosenblat, M ;
Bisgaier, CL ;
Newton, RS ;
Primo-Parmo, SL ;
La Du, BN .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (08) :1581-1590