Ti3+ Self-Doped Dark Rutile TiO2 Ultrafine Nanorods with Durable High-Rate Capability for Lithium-Ion Batteries

被引:228
作者
Chen, Jun [1 ]
Song, Weixin [1 ]
Hou, Hongshuai [1 ]
Zhang, Yan [1 ]
Jing, Mingjun [1 ]
Jia, Xinnan [1 ]
Ji, Xiaobo [1 ]
机构
[1] Cent S Univ, Key Lab Resources Chem Nonferrous Met, Coll Chem & Chem Engn, Minist Educ, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ENHANCED ELECTROCHEMICAL PERFORMANCE; ANODE MATERIALS; INTERCALATION; ELECTROACTIVITY; PHOTOCATALYSIS; NANOPARTICLES; MESOCRYSTALS; ELECTRODES; NANOTUBES; STORAGE;
D O I
10.1002/adfm.201502978
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dark-colored rutile TiO2 nanorods doped by electroconducting Ti3+ have been obtained uniformly with an average diameter of approximate to 7 nm, and have been first utilized as anodes in lithium-ion batteries. They deliver a high reversible specific capacity of 185.7 mAh g(-1) at 0.2 C (33.6 mA g(-1)) and maintain 92.1 mAh g(-1) after 1000 cycles at an extremely high rate 50 C with an outstanding retention of 98.4%. Notably, the coulombic efficiency of Ti3+-TiO2 has been improved by approximately 10% compared with that of pristine rutile TiO2, which can be mainly attributed to its prompt electron transfer because of the introduction of Ti3+. Again the synergetic merits are noticed when the promoted electronic conductivity is combined with a shortened Li+ diffusion length resulting from the ultrafine nanorod structure, giving rise to the remarkable rate capabilities and extraordinary cycling stabilities for applications in fast and durable charge/discharge batteries. It is of great significance to incorporate Ti3+ into rutile TiO2 to exhibit particular electrochemical characteristics triggering an effective way to improve the energy storage properties.
引用
收藏
页码:6793 / 6801
页数:9
相关论文
共 56 条
[1]   Electronic conductivity in nanostructured TiO2 films permeated with electrolyte [J].
Abayev, I ;
Zaban, A ;
Fabregat-Santiago, F ;
Bisquert, J .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2003, 196 (01) :R4-R6
[2]   Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries [J].
Ali, Zahid ;
Cha, Seung Nam ;
Sohn, Jung Inn ;
Shakir, Imran ;
Yan, Changzeng ;
Kim, Jong Min ;
Kang, Dae Joon .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17625-17629
[3]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[4]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[5]   Impact of nanosizing on lithiated rutile TiO2 [J].
Borghols, Wouter J. H. ;
Wagemaker, Marnix ;
Lafont, Ugo ;
Kelder, Erik M. ;
Mulder, Fokko M. .
CHEMISTRY OF MATERIALS, 2008, 20 (09) :2949-2955
[6]   A NONLINEAR LEAST-SQUARES FIT PROCEDURE FOR ANALYSIS OF IMMITTANCE DATA OF ELECTROCHEMICAL SYSTEMS [J].
BOUKAMP, BA .
SOLID STATE IONICS, 1986, 20 (01) :31-44
[7]   Carbon-Coated Anatase TiO2 Nanotubes for Li- and Na-Ion Anodes [J].
Bresser, Dominic ;
Oschmann, Bernd ;
Tahir, Muhammad N. ;
Mueller, Franziska ;
Lieberwirth, Ingo ;
Tremel, Wolfgang ;
Zentel, Rudolf ;
Passerini, Stefano .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (02) :A3013-A3020
[8]   TiO2-(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity [J].
Brutti, Sergio ;
Gentili, Valentina ;
Menard, Herve ;
Scrosati, Bruno ;
Bruce, Peter G. .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :322-327
[9]   An Electrochemically Anodic Study of Anatase TiO2 Tuned through Carbon-Coating for High-performance Lithium-ion Battery [J].
Chen, Jun ;
Hou, Hongshuai ;
Yang, Yingchang ;
Song, Weixin ;
Zhang, Yan ;
Yang, Xuming ;
Lan, Qing ;
Ji, Xiaobo .
ELECTROCHIMICA ACTA, 2015, 164 :330-336
[10]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959