The Polynomial Method in Quantum and Classical Computing

被引:11
作者
Aaronson, Scott [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
来源
PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE | 2008年
关键词
D O I
10.1109/FOCS.2008.91
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:3 / 3
页数:1
相关论文
共 19 条
[1]  
Aaronson S., 2005, Theory of Computing, V1, P1
[2]  
Aaronson S., 2002, PROC ACM STOC, P635, DOI [10.1145/509907.509999, DOI 10.1145/509907.509999]
[3]  
Aaronson S, 2006, ANN IEEE CONF COMPUT, P340
[4]   Polynomial degree vs. quantum query complexity [J].
Ambainis, A .
44TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2003, :230-239
[5]   Quantum lower bounds by quantum arguments [J].
Ambainis, A .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 64 (04) :750-767
[6]  
[Anonymous], PERCEPTIONS
[7]   Quantum lower bounds by polynomials [J].
Beals, R ;
Buhrman, H ;
Cleve, R ;
Mosca, M ;
De Wolf, R .
JOURNAL OF THE ACM, 2001, 48 (04) :778-797
[8]   PP IS CLOSED UNDER INTERSECTION [J].
BEIGEL, R ;
REINGOLD, N ;
SPIELMAN, D .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1995, 50 (02) :191-202
[9]  
Beigel R., 1994, Computational Complexity, V4, P339, DOI 10.1007/BF01263422
[10]  
Bernard S. G., 2012, Mem. Cl. Sci. Acad. Roy. Belg., P1