The Cauchy problem for dissipative Benjamin-Ono equation in weighted Sobolev spaces

被引:5
作者
Cunha, Alysson [1 ]
机构
[1] Univ Fed Goias UFG, IME, BR-74001970 Goiania, Go, Brazil
关键词
Well-posedness; dBO equation; Weighted Sobolev spaces; Fourier transform; Stein derivative; Unique continuation principles; ZAKHAROV-KUZNETSOV EQUATION; GLOBAL WELL-POSEDNESS; BURGERS EQUATION; INVISCID LIMIT; IVP; VERSION; WAVES;
D O I
10.1016/j.jmaa.2020.124468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness in weighted Sobolev spaces, for the initial value problem (IVP) associated with the dissipative Benjamin-Ono (dBO) equation. We establish persistence properties of the solution flow in the weighted Sobolev spaces Z(s,r) = H-s(R) boolean AND L-2(vertical bar x vertical bar(2r) dx), s >= r > 0. We also prove some unique continuation properties in these spaces. In particular, such results of unique continuation show that our results of well posedness are sharp. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 41 条
[1]   EXISTENCE AND FINITE DIMENSIONALITY OF THE GLOBAL ATTRACTOR FOR A CLASS OF NONLINEAR DISSIPATIVE EQUATIONS [J].
ALARCON, EA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :893-916
[2]   INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1967, 29 :559-&
[3]  
Berg Joran., 1976, INTERPOLATION SPACES
[4]   LARGE-TIME ASYMPTOTICS OF THE GENERALIZED BENJAMIN-ONO-BURGERS EQUATION [J].
Bona, Jerry L. ;
Luo, Laihan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (01) :15-50
[5]   On well-posedness for the Benjamin-Ono equation [J].
Burq, Nicolas ;
Planchon, Fabrice .
MATHEMATISCHE ANNALEN, 2008, 340 (03) :497-542
[6]   THE CAUCHY PROBLEM FOR A FAMILY OF TWO-DIMENSIONAL FRACTIONAL BENJAMIN-ONO EQUATIONS [J].
Bustamante, Eddye ;
Jimenez Urrea, Jose ;
Mejia, Jorge .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (03) :1177-1203
[7]   The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces [J].
Cunha, Alysson ;
Pastor, Ademir .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :2041-2067
[8]   The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces [J].
Cunha, Alysson ;
Pastor, Ademir .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (02) :660-693
[9]   TEMPORAL ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE BENJAMIN-ONO-BURGERS EQUATION [J].
DIX, DB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (02) :238-287
[10]   THE BENJAMIN-ONO-BURGERS EQUATION - AN APPLICATION IN SOLAR PHYSICS [J].
EDWIN, PM ;
ROBERTS, B .
WAVE MOTION, 1986, 8 (02) :151-158