Turbulent cascade modeling of single and bubbly two-phase turbulent flows

被引:19
作者
Bolotnov, Igor A. [1 ]
Lahey, Richard T., Jr. [1 ]
Drew, Donald A. [1 ]
Jansen, Kenneth E. [1 ]
机构
[1] Rensselaer Polytech Inst, Ctr Multiphase Res, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.ijmultiphaseflow.2008.06.006
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The analysis of turbulent two-phase flows requires closure models in order to perform reliable computational multiphase fluid dynamics (CMFD) analyses. A spectral turbulence cascade-transport model, which tracks the evolution of the turbulent kinetic energy from large to small liquid eddies, has been developed for the analysis of the homogeneous decay of isotropic single and bubbly two-phase turbulence. This model has been validated for the decay of homogeneous, isotropic single and two-phase bubbly now turbulence for data having a 5 mm mean bubble diameter. The Reynolds number of the data based on bubble diameter and relative velocity is approximately 1400. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1142 / 1151
页数:10
相关论文
共 29 条
[1]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP
[2]   Effect of bubble deformation on the properties of bubbly flows [J].
Bunner, B ;
Tryggvason, G .
JOURNAL OF FLUID MECHANICS, 2003, 495 :77-118
[3]   A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows [J].
Chaouat, B ;
Schiestel, R .
PHYSICS OF FLUIDS, 2005, 17 (06) :1-19
[4]   USE OF A CONTRACTION TO IMPROVE ISOTROPY OF GRID-GENERATED TURBULENCE [J].
COMTEBELLOT, G ;
CORRSIN, S .
JOURNAL OF FLUID MECHANICS, 1966, 25 :657-+
[5]  
Desnianskii V., 1974, J. Appl. Math. Mech, V38, P468, DOI [10.1016/0021-8928(74)90041-0, DOI 10.1016/0021-8928(74)90041-0]
[6]   LOCAL ENERGY-TRANSFER AND NONLOCAL INTERACTIONS IN HOMOGENEOUS, ISOTROPIC TURBULENCE [J].
DOMARADZKI, JA ;
ROGALLO, RS .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (03) :413-426
[7]   ENERGY-TRANSFER IN NUMERICALLY SIMULATED WALL-BOUNDED TURBULENT FLOWS [J].
DOMARADZKI, JA ;
LIU, W ;
HARTEL, C ;
KLEISER, L .
PHYSICS OF FLUIDS, 1994, 6 (04) :1583-1599
[8]  
Drew D.A., 1998, Theory of Multicomponent Fluids
[9]  
Hinze J. O, 1975, TURBULENCE
[10]  
ILIC M, 2007, P INT C MULT FLOWS