Online Siamese Network for Visual Object Tracking

被引:10
|
作者
Chang, Shuo [1 ]
Li, Wei [2 ]
Zhang, Yifan [1 ]
Feng, Zhiyong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Northern Illinois Univ, Dept Elect Engn, De Kalb, IL 60115 USA
关键词
visual object tracking; Siamese network; improved contrastive loss; Bayesian verification;
D O I
10.3390/s19081858
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Offline-trained Siamese networks are not robust to the environmental complication in visual object tracking. Without online learning, the Siamese network cannot learn from instance domain knowledge and adapt to appearance changes of targets. In this paper, a new lightweight Siamese network is proposed for feature extraction. To cope with the dynamics of targets and backgrounds, the weight in the proposed Siamese network is updated in an online manner during the tracking process. In order to enhance the discrimination capability, the cross-entropy loss is integrated into the contrastive loss. Inspired by the face verification algorithm DeepID2, the Bayesian verification model is applied for candidate selection. In general, visual object tracking can benefit from face verification algorithms. Numerical results suggest that the newly developed algorithm achieves comparable performance in public benchmarks.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Exemplar Loss for Siamese Network in Visual Tracking
    Chang, Shuo
    Lu, Hua
    Huang, Sai
    Zhang, Yifan
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 1405 - 1412
  • [32] Visual Object Tracking for Unmanned Aerial Vehicles Based on the Template-Driven Siamese Network
    Sun, Lifan
    Yang, Zhe
    Zhang, Jinjin
    Fu, Zhumu
    He, Zishu
    REMOTE SENSING, 2022, 14 (07)
  • [33] Siamese Network Based on MLP and Multi-head Cross Attention for Visual Object Tracking
    Li, Piaoyang
    Lan, Shiyong
    Sun, Shipeng
    Wang, Wenwu
    Gao, Yongyang
    Yang, Yongyu
    Yu, Guangyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PART X, 2023, 14263 : 420 - 431
  • [34] SiamCross: Siamese Cross Object-Aware Networks for Visual Object Tracking
    Huang W.-H.
    Feng Y.
    Qiang B.-H.
    Pei Y.-X.
    Luo Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (10): : 2151 - 2166
  • [35] Siamese Graph Attention Networks for robust visual object tracking
    Lu, Junjie
    Li, Shengyang
    Guo, Weilong
    Zhao, Manqi
    Yang, Jian
    Liu, Yunfei
    Zhou, Zhuang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 229
  • [36] CoSiNet: Dual-Branch Collaborative Siamese Network for Visual Object Tracking
    Zhou, Wenjun
    Liu, Yao
    Wang, Nan
    Wang, Yifan
    Peng, Bo
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1675 - 1680
  • [37] Siamese Centerness Prediction Network for Real-Time Visual Object Tracking
    Wu, Yue
    Cai, Chengtao
    Yeo, Chai Kiat
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1029 - 1044
  • [38] Siamese Centerness Prediction Network for Real-Time Visual Object Tracking
    Yue Wu
    Chengtao Cai
    Chai Kiat Yeo
    Neural Processing Letters, 2023, 55 : 1029 - 1044
  • [39] Relation-aware Siamese region proposal network for visual object tracking
    Jiaming Zhu
    Guopeng Zhang
    Shibin Zhou
    Kun Li
    Multimedia Tools and Applications, 2021, 80 : 15469 - 15485
  • [40] Relation-aware Siamese region proposal network for visual object tracking
    Zhu, Jiaming
    Zhang, Guopeng
    Zhou, Shibin
    Li, Kun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 15469 - 15485