GLOBAL WELL-POSEDNESS OF CRITICAL NONLINEAR SCHRODINGER EQUATIONS BELOW L2

被引:12
|
作者
Cho, Yonggeun [1 ,2 ]
Hwang, Gyeongha [3 ]
Ozawa, Tohru [4 ]
机构
[1] Chonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
[2] Chonnam Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South Korea
[3] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[4] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
基金
新加坡国家研究基金会;
关键词
Hartree equations; global well-posedness; critical nonlinearity below L-2; weighted Strichartz estimate; angular regularity; DEFOCUSING HARTREE EQUATION; SCATTERING; SPACE; WAVES;
D O I
10.3934/dcds.2013.33.1389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global well-posedness on the Cauchy problem of nonlinear Schrodinger equations (NLS) is studied for a class of critical nonlinearity below L-2 in small data setting. We consider Hartree type (HNLS) and inhomogeneous power type NLS (PNLS). Since the critical Sobolev index s(c) is negative, it is rather difficult to analyze the nonlinear term. To overcome the difficulty we combine weighted Strichartz estimates in polar coordinates with new Duhamel estimates involving angular regularity.
引用
收藏
页码:1389 / 1405
页数:17
相关论文
共 50 条