GLOBAL WELL-POSEDNESS OF CRITICAL NONLINEAR SCHRODINGER EQUATIONS BELOW L2

被引:12
|
作者
Cho, Yonggeun [1 ,2 ]
Hwang, Gyeongha [3 ]
Ozawa, Tohru [4 ]
机构
[1] Chonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
[2] Chonnam Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South Korea
[3] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[4] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
基金
新加坡国家研究基金会;
关键词
Hartree equations; global well-posedness; critical nonlinearity below L-2; weighted Strichartz estimate; angular regularity; DEFOCUSING HARTREE EQUATION; SCATTERING; SPACE; WAVES;
D O I
10.3934/dcds.2013.33.1389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global well-posedness on the Cauchy problem of nonlinear Schrodinger equations (NLS) is studied for a class of critical nonlinearity below L-2 in small data setting. We consider Hartree type (HNLS) and inhomogeneous power type NLS (PNLS). Since the critical Sobolev index s(c) is negative, it is rather difficult to analyze the nonlinear term. To overcome the difficulty we combine weighted Strichartz estimates in polar coordinates with new Duhamel estimates involving angular regularity.
引用
收藏
页码:1389 / 1405
页数:17
相关论文
共 50 条
  • [1] Global well-posedness for L2 critical nonlinear Schrodinger equation in higher dimensions
    De Silva, Daniela
    Pavlovic, Natasa
    Staffilani, Gigiola
    Tzirakis, Nikolaos
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (04) : 1023 - 1041
  • [2] On the global well-posedness for the nonlinear Schrodinger equations with large initial data of infinite L2 norm
    Hyakuna, Ryosuke
    Tanaka, Takamasa
    Tsutsumi, Masayoshi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1304 - 1319
  • [3] ALMOST SURE WELL-POSEDNESS OF THE CUBIC NONLINEAR SCHRODINGER EQUATION BELOW L2(T)
    Colliander, James
    Oh, Tadahiro
    DUKE MATHEMATICAL JOURNAL, 2012, 161 (03) : 367 - 414
  • [4] GLOBAL WELL-POSEDNESS FOR NONLINEAR SCHRODINGER EQUATIONS WITH ENERGY-CRITICAL DAMPING
    Feng, Binhua
    Zhao, Dun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [5] Global Well-Posedness for Higher-Order Schrodinger Equations in Weighted L2 Spaces
    Koh, Youngwoo
    Seo, Ihyeok
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (10) : 1815 - 1830
  • [6] GLOBAL WELL-POSEDNESS FOR THE DEFOCUSSING MASS-CRITICAL STOCHASTIC NONLINEAR SCHRODINGER EQUATION ON R AT L2 REGULARITY
    Fan, Chenjie
    Xu, Weijun
    ANALYSIS & PDE, 2021, 14 (08): : 2561 - 2594
  • [7] Global Well-Posedness of the Derivative Nonlinear Schrodinger Equations on T
    Win, Yin Yin Su
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (01): : 51 - 88
  • [8] The well-posedness for fractional nonlinear Schrodinger equations
    Peng, Li
    Zhou, Yong
    Ahmad, Bashir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (07) : 1998 - 2005
  • [9] Global well-posedness for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 649 - 669
  • [10] Global well-posedness for nonlinear fourth-order Schrodinger equations
    Peng, Xiuyan
    Niu, Yi
    Liu, Jie
    Zhang, Mingyou
    Shen, Jihong
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 8