Simulation of OLEDs with a polar electron transport layer

被引:43
作者
Altazin, S. [1 ]
Zufle, S. [1 ,2 ]
Knapp, E. [2 ]
Kirsch, C. [2 ]
Schmidt, T. D. [3 ]
Jaeger, L. [3 ]
Noguchi, Y. [4 ]
Bruetting, W. [3 ]
Ruhstaller, B. [1 ,2 ]
机构
[1] Fluxim AG, Winterthur, Switzerland
[2] Zurich Univ Appl Sci, Inst Computat Phys, Winterthur, Switzerland
[3] Univ Augsburg, Expt Phys 4, Inst Phys, Augsburg, Germany
[4] Meiji Univ, Sch Sci & Technol, Kawasaki, Kanagawa 2148571, Japan
基金
瑞士国家科学基金会;
关键词
OLED; Polar ETL; Simulation; Impedance spectroscopy; Drift-diffusion; Capacitance-voltage;
D O I
10.1016/j.orgel.2016.10.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Organic light-emitting diodes (OLEDs) rely on the use of functional materials with suitable energy levels and mobilities for selective charge carrier injection and transport of one species only at the respective electrode. Until recently, however, the dipolar nature of many organic semiconductors has been largely ignored in this context. In particular, electron transports layers (ETLs) often exhibit spontaneous orientation polarization leading to interfacial charges that modify the electrical potential landscape inside a hetero-layer device. Here we demonstrate that the effect of polar ETLs can be simulated using the well-established Poisson and drift-diffusion formalism, if these interfacial charges are taken into account. Impedance spectroscopy is used in order to validate our approach and to characterize the polarity of the material. Finally, simulations allow to quantify the impact of polar Ells on device performance. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:244 / 249
页数:6
相关论文
共 15 条
[1]  
Altazin S., 2015, SID S, V46
[2]   Analytical modeling of the contact resistance in top gate/bottom contacts organic thin film transistors [J].
Altazin, Stephane ;
Clerc, Raphael ;
Gwoziecki, Romain ;
Boudinet, Damien ;
Ghibaudo, Gerard ;
Pananakakis, Georges ;
Chartier, Isabelle ;
Coppard, Romain .
ORGANIC ELECTRONICS, 2011, 12 (06) :897-902
[3]  
[Anonymous], 2016, SETFOS 4 3 MANUAL, P106
[4]  
Bloom F., 2013, IDW TECH DIGEST, P876
[5]   Device physics of organic light-emitting diodes based on molecular materials [J].
Bruetting, Wolfgang ;
Berleb, Stefan ;
Mueckl, Anton G. .
ORGANIC ELECTRONICS, 2001, 2 (01) :1-36
[6]   Influence of doping on charge carrier collection in normal and inverted geometry polymer: fullerene solar cells [J].
Dibb, George F. A. ;
Muth, Mathis-Andreas ;
Kirchartz, Thomas ;
Engmann, Sebastian ;
Hoppe, Harald ;
Gobsch, Gerhard ;
Thelakkat, Mukundan ;
Blouin, Nicolas ;
Tierney, Steve ;
Carrasco-Orozco, Miguel ;
Durrant, James R. ;
Nelson, Jenny .
SCIENTIFIC REPORTS, 2013, 3
[7]   Spontaneous buildup of giant surface potential by vacuum deposition of Alq3 and its removal by visible light irradiation [J].
Ito, E ;
Washizu, Y ;
Hayashi, N ;
Ishii, H ;
Matsuie, N ;
Tsuboi, K ;
Ouchi, Y ;
Harima, Y ;
Yamashita, K ;
Seki, K .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (12) :7306-7310
[8]   Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission [J].
Kinjo, Hiroumi ;
Lim, Hyunsoo ;
Sato, Tomoya ;
Noguchi, Yutaka ;
Nakayama, Yasuo ;
Ishii, Hisao .
APPLIED PHYSICS EXPRESS, 2016, 9 (02)
[9]   Analysis of negative capacitance and self-heating in organic semiconductor devices [J].
Knapp, Evelyne ;
Ruhstaller, Beat .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (13)
[10]   Numerical analysis of steady-state and transient charge transport in organic semiconductor devices [J].
Knapp, Evelyne ;
Ruhstaller, Beat .
OPTICAL AND QUANTUM ELECTRONICS, 2011, 42 (11-13) :667-677