Blind Compensation of Nonlinear Distortions: Application to Source Separation of Post-Nonlinear Mixtures

被引:18
作者
Duarte, Leonardo T. [1 ]
Suyama, Ricardo [2 ]
Rivet, Bertrand [4 ]
Attux, Romis [3 ]
Romano, Joao M. T. [3 ]
Jutten, Christian [4 ]
机构
[1] Univ Campinas UNICAMP, Sch Appl Sci FCA, BR-13484350 Sao Paulo, Brazil
[2] Univ Fed ABC, Ctr Engn Modelagem & Ciencias Sociais Aplicadas C, BR-09210170 Sao Paulo, Brazil
[3] Univ Campinas UNICAMP, Sch Elect & Comp Engn FEEC, BR-13083852 Sao Paulo, Brazil
[4] Inst Natl Polytech Grenoble, GIPSA Lab, CNRS, UMR 5216, F-38402 St Martin Dheres, France
关键词
Bandlimited signals; blind source separation; nonlinear distortion; post-nonlinear model; smart chemical sensor arrays; INDEPENDENT COMPONENT ANALYSIS;
D O I
10.1109/TSP.2012.2208953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we address the problem of blind compensation of nonlinear distortions. Our approach relies on the assumption that the input signal is bandlimited. We then make use of the classical result that the output of a nonlinearity has a wider spectrum than the one of the input signal. However, differently from previous works, our approach does not assume knowledge of the input signal bandwidth. The proposal is considered in the development of a two-stage method for blind source separation (BSS) in post-nonlinear (PNL) models. Indeed, once the functions present in the nonlinear stage of a PNL model are compensated, one can apply the well-established linear BSS algorithms to complete the task of separating the sources. Numerical experiments performed in different scenarios attest the viability of the proposal. Moreover, the proposed method is tested in a real situation where the data are acquired by smart chemical sensor arrays.
引用
收藏
页码:5832 / 5844
页数:13
相关论文
共 37 条
[1]   Criteria based on mutual information minimization for blind source separation in post nonlinear mixtures [J].
Achard, S ;
Pham, DT ;
Jutten, C .
SIGNAL PROCESSING, 2005, 85 (05) :965-974
[2]  
Almeida LB, 2005, J MACH LEARN RES, V6, P1199
[3]   Blind search for optimal Wiener equalizers using an artificial immune network model [J].
Attux, RRD ;
Loiola, MB ;
Suyama, R ;
de Castro, LN ;
Von Zuben, FJ ;
Romano, JMT .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2003, 2003 (08) :740-747
[4]   Differential of the mutual information [J].
Babaie-Zadeh, M ;
Jutten, C ;
Nayebi, K .
IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (01) :48-51
[5]  
Babaie-Zadeh M., 2002, P 11 EUR SIGN PROC C, VII, P11
[6]   A blind source separation technique using second-order statistics [J].
Belouchrani, A ;
AbedMeraim, K ;
Cardoso, JF ;
Moulines, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) :434-444
[7]  
Burnet M., 1959, The clonal selection theory of acquired immunity, DOI [10.5962/bhl.title.8281, DOI 10.5962/BHL.TITLE.8281]
[8]  
Comon P, 2010, HANDBOOK OF BLIND SOURCE SEPARATION: INDEPENDENT COMPONENT ANALYSIS AND APPLICATIONS, P1
[9]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[10]  
Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed