Optimizing the Gaussian excitation function in the finite difference time domain method

被引:3
|
作者
Shin, CS [1 ]
Nevels, R [1 ]
机构
[1] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
关键词
finite difference time domain (FDTD); Gaussian excitation; numerical dispersion; phase error;
D O I
10.1109/13.983216
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A systematic method is presented for determining the optimal pulsewidth and variance of a Gaussian excitation function in the finite difference time domain (FDTD) method. We highlight the interaction of several criteria, such as the stability condition, machine precision limits, the numerical grid cutoff frequency, and the dispersion relation, that play crucial roles in the design of the initial pulse. Optimal Gaussian pulse design is desirable if numerical dispersion, an inherent yet unavoidable property of the standard second-order FDTD Yee algorithm, is to be minimized. A method for determining the phase error of a Gaussian pulse is also presented.
引用
收藏
页码:15 / 18
页数:4
相关论文
共 50 条
  • [1] Sparse Finite Difference Time Domain Method
    Doerr, Christopher R.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (23) : 2259 - 2262
  • [2] The symplectic finite difference time domain method
    Saitoh, I
    Suzuki, Y
    Takahashi, N
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) : 3251 - 3254
  • [3] CONFORMAL TIME DOMAIN FINITE-DIFFERENCE METHOD
    MEI, KK
    CANGELLARIS, A
    ANGELAKOS, DJ
    RADIO SCIENCE, 1984, 19 (05) : 1145 - 1147
  • [4] A high definition, finite difference time domain method
    Zhao, HW
    Crozier, S
    Liu, F
    APPLIED MATHEMATICAL MODELLING, 2003, 27 (05) : 409 - 419
  • [5] CONFORMAL TIME DOMAIN FINITE DIFFERENCE METHOD.
    Mei, Kenneth K.
    Cangellaris, Andreas
    Angelakos, Diogenes J.
    1600, (19):
  • [6] Geometrically Stochastic Finite Difference Time Domain Method
    Masumnia-Bisheh, Khadijeh
    Furse, Cynthia
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 217 - 218
  • [7] Optimizing Scattering Coefficients of Disordered Metamaterials Using the Finite-Difference Time-Domain Method
    Mock, Adam
    Hewlett, Sheldon
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2019, 34 (02): : 308 - 309
  • [8] Optimizing Scattering Coefficients of Disordered Metamaterials Using the Finite-Difference Time-Domain Method
    Mock, Adam
    Hewlett, Sheldon
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [9] APPLICATIONS OF THE DISCRETE GREEN'S FUNCTION IN THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    Stefanski, Tomasz P.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 139 : 479 - 498
  • [10] Transformation optics using finite difference time domain method
    Dhawan, Prerak
    Paradkar, B. S.
    PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES IX, 2019, 10927