Application of He's parameter-expansion method to Jerk Equation

被引:12
作者
Wang, Yu-Xi [1 ]
Ren, Zhong-Fu
Mo, Lu-Feng [1 ]
机构
[1] Zhejiang Forestry Coll, Sch Informat Engn, Linan 311300, Zhejiang, Peoples R China
来源
ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4 | 2008年 / 96卷
关键词
D O I
10.1088/1742-6596/96/1/012215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work applies He's parameter-expansion method (PEM) to Jerk equation. The method, taking full advantage of simple solution procedure of the classical perturbation method, does not depend upon small parameter assumption. Comparison of the obtained results with the exact solution shows that the method is very effective, convenient and quite accurate. The method can be easily extended to other nonlinear equations.
引用
收藏
页数:5
相关论文
共 21 条
[11]   Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt-Poincare method [J].
Liu, HM .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :577-579
[12]  
Odibat ZM, 2006, INT J NONLIN SCI NUM, V7, P27
[13]  
Özis T, 2007, INT J NONLINEAR SCI, V8, P243
[14]  
Shou DH, 2007, INT J NONLIN SCI NUM, V8, P121
[15]   Same simple chaotic jerk functions [J].
Sprott, JC .
AMERICAN JOURNAL OF PHYSICS, 1997, 65 (06) :537-543
[16]   He's parameter-expanding methods for strongly nonlinear oscillators [J].
Xu, Lan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (01) :148-154
[17]   Application of He's parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire [J].
Xu, Lan .
PHYSICS LETTERS A, 2007, 368 (3-4) :259-262
[18]  
YUSUFOGLU E, INT J NONLINEAR SCI, V8, P353
[19]  
Yusufoglu E, 2007, INT J NONLIN SCI NUM, V8, P153
[20]  
Zhu SD, 2007, INT J NONLIN SCI NUM, V8, P465