Global solutions of a high dimensional system for Korteweg materials

被引:151
作者
Hattori, HHH
Li, DN
机构
[1] Mathematics Department, West Virginia University, Morgantown
关键词
D O I
10.1006/jmaa.1996.0069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global existence of solutions to a high-dimensional system of Korteweg materials is established when the initial data are small. The complete model was proposed by Dunn and Serrin and the local existence of the solution was obtained in an earlier paper by the authors. (C) 1996 Academic Press, Inc.
引用
收藏
页码:84 / 97
页数:14
相关论文
共 13 条
[1]   ASYMPTOTIC-BEHAVIOR AND CHANGES OF PHASE IN ONE-DIMENSIONAL NON-LINEAR VISCOELASTICITY [J].
ANDREWS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (02) :306-341
[2]  
[Anonymous], 1980, J MATH KYOTO U
[3]  
DUNN JE, 1985, ARCH RATION MECH AN, V88, P95
[4]   A DYNAMIC SYSTEM APPROACH TO A PHASE-TRANSITION PROBLEM [J].
HATTORI, H ;
MISCHAIKOW, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (02) :340-378
[5]   SOLUTIONS FOR 2-DIMENSIONAL SYSTEM FOR MATERIALS OF KORTEWEG TYPE [J].
HATTORI, H ;
LI, DN .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (01) :85-98
[6]  
KORTEWEG D. J., 1901, Archives Neerlandaises des Sciences exactes et naturelles, V6, P1
[7]  
Lions J.-L., 1972, NONHOMOGENEOUS BOUND, V181
[8]  
Nirenberg L., 1959, ANN SCUOL NORM SUP P, V13, P116
[10]  
Serrin J., 1980, P SAFA 4 C REC METH