Multi-feature fusion of deep networks for mitosis segmentation in histological images

被引:3
|
作者
Zhang, Yuan [1 ]
Chen, Jin [1 ]
Pan, Xianzhu [1 ]
机构
[1] Anhui Med Coll, Dept Basic Courses, Intelligent Med Assisted Diag Lab iMADlab, Hefei, Peoples R China
关键词
deep learning; feature fusion; handcrafted features; histological images; knowledge transfer; mitotic cell; CONVOLUTIONAL NEURAL-NETWORKS; SCALE;
D O I
10.1002/ima.22487
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mitotic cell detection in pathological images is significant for predicting the malignancy of tumors and the intelligent segmentation of these cells. Overcoming human error generated by pathologists in reading the images while enabling fast detection through high computing power remains a very challenging task. In this study, we proposed a method that fuses handcrafted features and deep features to segment mitotic cells in whole-slide images. The handcrafted feature extraction strategy was based on four measure indices of the Gray Level Co-occurrence Matrix. The deep feature extraction strategy was based on natural image knowledge transfer. Finally, the two strategies were fused to classify and distinguish the image pixels for the segmentation of mitotic cells. We used the AMIDA13 dataset and the pathological images collected by the Department of Pathology of Anhui No. 2 Provincial People's Hospital as the experimental dataset. We compared the Areas Under Curve (AUC) of Receiver Operating Characteristic obtained through the handcrafted feature model, the improved deep feature model with knowledge transfer, the classic U-NET model, and the proposed multi-feature fusion model. The results showed that the AUC values of our proposed method had 0.07 and 0.05 improved to classic U-NET model on test dataset and validation dataset respectively, while achieved the best segmentation performance and detected most of true-positive cells, representing a breakthrough for clinical application. The experiments also indicated that the staining uniformity of pathological tissue impacted the model performance.
引用
收藏
页码:562 / 574
页数:13
相关论文
共 50 条
  • [41] Sea-land Segmentation in SAR Images Based on Multi-feature Fused Boundary Clustering
    Wu, Kejiang
    Xu, Xiaojian
    TARGET AND BACKGROUND SIGNATURES IV, 2018, 10794
  • [42] Multi-feature fusion for deep learning to predict plant lncRNA-protein interaction
    Wekesa, Jael Sanyanda
    Meng, Jun
    Luan, Yushi
    GENOMICS, 2020, 112 (05) : 2928 - 2936
  • [43] A multi-feature bipartite graph ensemble for image segmentation
    Gu, Xianbin
    Deng, Jeremiah D.
    PATTERN RECOGNITION LETTERS, 2020, 131 : 98 - 104
  • [44] Based on Multi-Feature Information Attention Fusion for Multi-Modal Remote Sensing Image Semantic Segmentation
    Zhang, Chongyu
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 71 - 76
  • [45] Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks
    Wu, Yu
    Yi, Zhang
    KNOWLEDGE-BASED SYSTEMS, 2020, 200
  • [46] The Use of Deep Learning for Segmentation of Bone Marrow Histological Images
    Oszutowska-Mazurek, Dorota
    Knap, Oktawian
    ARTIFICIAL INTELLIGENCE TRENDS IN INTELLIGENT SYSTEMS, CSOC2017, VOL 1, 2017, 573 : 466 - 473
  • [47] Multi-Feature Classification of Breast Cancer Histopathology Images: An Experimental Investigation in Machine Learning and Deep Learning Paradigm
    Atrey, Kushangi
    Singh, Bikesh Kumar
    Bodhey, Narendra Kuber
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2023, 66
  • [48] Alg-MFDL: A multi-feature deep learning framework for allergenic proteins prediction
    Hu, Xiang
    Li, Jingyi
    Liu, Taigang
    ANALYTICAL BIOCHEMISTRY, 2025, 697
  • [49] Underwater target recognition based on adaptive multi-feature fusion network
    Pan X.
    Sun J.
    Feng T.
    Lei M.
    Wang H.
    Zhang W.
    Multimedia Tools and Applications, 2025, 84 (10) : 7297 - 7317
  • [50] Multi-feature fusion of convolutional neural networks for Fine-Grained ship classification
    Huang, Sizhe
    Xu, Huosheng
    Xia, Xuezhi
    Yang, Fan
    Zou, Fuhao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (01) : 125 - 135