Taming Active Material-Solid Electrolyte Interfaces with Organic Cathode for All-Solid-State Batteries

被引:93
作者
Hao, Fang [1 ,2 ]
Chi, Xiaowei [1 ,2 ]
Liang, Yanliang [1 ,2 ]
Zhang, Ye [1 ,2 ]
Xu, Rong [3 ]
Guo, Hua [4 ]
Terlier, Tanguy [5 ]
Dong, Hui [1 ,2 ]
Zhao, Kejie [3 ]
Lou, Jun [4 ]
Yao, Yan [1 ,2 ]
机构
[1] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[2] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
[3] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[4] Rice Univ, Dept Mat Sci & Engn, Houston, TX 77005 USA
[5] Rice Univ, SIMS Lab, Shared Equipment Author, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
SODIUM-ION BATTERIES; NA3PS4; CONDUCTION; DESIGN;
D O I
10.1016/j.joule.2019.03.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Attaining stable active material-solid electrolyte interfaces is a great challenge in sulfide-based all-solid-state sodium batteries (ASSSBs). A resistive layer forms at the interface upon charging above the anodic stability potential of sulfide electrolytes. In addition, contact failure at the interface during cycling is long known, but a fundamental solution is not yet available. Herein, we use an organic cathode material, pyrene-4,5,9,10-tetraone (PTO), to enable high-performance ASSSBs. We report, for the first time, a reversible active material-electrolyte interfacial resistance evolution during cycling. We further show for the first time that a low-modulus cathode material such as PTO maintains intimate interfacial contact with solid electrolytes during cycling, thus improving cycle life. The PTO-based cells exhibit a high specific energy (587 Wh kg(-1)) and a record cycling stability (500 cycles) among ASSSBs. This work reveals an effective cathode material design strategy toward compatibility with solid electrolytes and thus high-performance ASSSBs.
引用
收藏
页码:1349 / 1359
页数:11
相关论文
共 47 条
[1]  
Banerjee A., 2016, Angew. Chemie, V128, P9786
[2]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[3]   Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries [J].
Chi, Xiaowei ;
Liang, Yanliang ;
Hao, Fang ;
Zhang, Ye ;
Whiteley, Justin ;
Dong, Hui ;
Hu, Pu ;
Lee, Sehee ;
Yao, Yan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (10) :2630-2634
[4]   Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor [J].
Chu, Iek-Heng ;
Kompella, Christopher S. ;
Han Nguyen ;
Zhu, Zhuoying ;
Hy, Sunny ;
Deng, Zhi ;
Meng, Ying Shirley ;
Ong, Shyue Ping .
SCIENTIFIC REPORTS, 2016, 6
[5]   Vacancy-Controlled Na+ Superion Conduction in Na11Sn2PS12 [J].
Duchardt, Marc ;
Ruschewitz, Uwe ;
Adams, Stefan ;
Dehnen, Stefanie ;
Roling, Bernhard .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (05) :1351-1355
[6]   Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface [J].
Gao, Yue ;
Wang, Daiwei ;
Li, Yuguang C. ;
Yu, Zhaoxin ;
Mallouk, Thomas E. ;
Wang, Donghai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (41) :13608-13612
[7]   Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes [J].
Han, Fudong ;
Zhu, Yizhou ;
He, Xingfeng ;
Mo, Yifei ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[8]   Architectural design and fabrication approaches for solid-state batteries [J].
Hao, Fang ;
Han, Fudong ;
Liang, Yanliang ;
Wang, Chunsheng ;
Yao, Yan .
MRS BULLETIN, 2018, 43 (10) :775-781
[9]   High sodium ion conductivity of glass ceramic electrolytes with cubic Na3PS4 [J].
Hayashi, Akitoshi ;
Noi, Kousuke ;
Tanibata, Naoto ;
Nagao, Motohiro ;
Tatsumisago, Masahiro .
JOURNAL OF POWER SOURCES, 2014, 258 :420-423
[10]   Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries [J].
Hayashi, Akitoshi ;
Noi, Kousuke ;
Sakuda, Atsushi ;
Tatsumisago, Masahiro .
NATURE COMMUNICATIONS, 2012, 3