Stochastic order characterization of uniform integrability and tightness

被引:7
作者
Leskela, Lasse [1 ]
Vihola, Matti [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
Strong stochastic order; Increasing convex order; Stochastic domination; Bounded in probability; Hardy-Littlewood maximal random variable;
D O I
10.1016/j.spl.2012.09.023
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominating random variables. In particular, we show that, whenever a family of random variables is stochastically bounded by a p-integrable random variable for some p > 1, there is no distinction between the strong order and the increasing convex order. These results also yield new characterizations of relative compactness in Wasserstein and Prohorov metrics. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:382 / 389
页数:8
相关论文
共 18 条
[1]  
Ambrosio L., 2006, Gradient Flows in Metric Spaces and in the Space of Probability Measures
[2]  
[Anonymous], 1998, PROB APPL S, DOI 10.1007/b98894
[3]   A monotonicity result for the workload in Markov-modulated queues [J].
Bauerle, N ;
Rolski, T .
JOURNAL OF APPLIED PROBABILITY, 1998, 35 (03) :741-747
[4]  
Bertsekas D., 2003, Convex Analysis and Optimization
[5]   DISTRIBUTION OF MAXIMA OF MARTINGALES [J].
DUBINS, LE ;
GILAT, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 68 (03) :337-338
[6]  
Ethier S. N., 2005, WILEY SERIES PROBABI
[7]   On choosing and bounding probability metrics [J].
Gibbs, AL ;
Su, FE .
INTERNATIONAL STATISTICAL REVIEW, 2002, 70 (03) :419-435
[8]   A maximal theorem with function-theoretic applications [J].
Hardy, GH ;
Littlewood, JE .
ACTA MATHEMATICA, 1930, 54 (01) :81-116
[9]   Looking for martingales associated to a self-decomposable law [J].
Hirsch, F. ;
Yor, M. .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :932-961
[10]  
Kallenberg O., 2002, Foundations of modern probability