Tools for Interpreting Large-scale Protein Profiling in Microbiology

被引:17
作者
Hendrickson, E. L. [1 ,2 ]
Lamont, R. J. [3 ,4 ]
Hackett, M. [1 ]
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
[3] Univ Florida, Dept Oral Biol, Gainesville, FL 32610 USA
[4] Univ Florida, Ctr Mol Microbiol, Coll Dent, Gainesville, FL 32610 USA
关键词
DAVID; Gene Ontology; GoMiner; bioinformatics; proteomics; Porphyromonas gingivalis; Methanococcus maripaludis; protein profiling; protein expression;
D O I
10.1177/154405910808701113
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Quantitative proteomic analysis of microbial systems generates large datasets that can be difficult and time-consuming to interpret. Fortunately, many of the data display and gene-clustering tools developed to analyze large transcriptome microarray datasets are also applicable to proteomes. Plots of abundance ratio vs. total signal or spectral counts can highlight regions of random error and putative change. Displaying data in the physical order of the genes in the genome sequence can highlight potential operons. At a basic level of transcriptional organization, identifying operons can give insights into regulatory pathways as well as provide corroborating evidence for proteomic results. Classification and clustering algorithms can group proteins together by their abundance changes under different conditions, helping to identify interesting expression patterns, but often work poorly with noisy data such as typically generated in a large-scale proteomic analysis. Biological interpretation can be aided more directly by overlaying differential protein abundance data onto metabolic pathways, indicating pathways with altered activities. More broadly, ontology tools detect altered levels of protein abundance for different metabolic pathways, molecular functions, and cellular localizations. In practice, pathway analysis and ontology are limited by the level of database curation associated with the organism of interest.
引用
收藏
页码:1004 / 1015
页数:12
相关论文
共 54 条
[1]   Microarray data analysis: from disarray to consolidation and consensus [J].
Allison, DB ;
Cui, XQ ;
Page, GP ;
Sabripour, M .
NATURE REVIEWS GENETICS, 2006, 7 (01) :55-65
[2]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Standardizing global gene expression analysis between laboratories and across platforms [J].
Bammler, T ;
Beyer, RP ;
Bhattacharya, S ;
Boorman, GA ;
Boyles, A ;
Bradford, BU ;
Bumgarner, RE ;
Bushel, PR ;
Chaturvedi, K ;
Choi, D ;
Cunningham, ML ;
Dengs, S ;
Dressman, HK ;
Fannin, RD ;
Farun, FM ;
Freedman, JH ;
Fry, RC ;
Harper, A ;
Humble, MC ;
Hurban, P ;
Kavanagh, TJ ;
Kaufmann, WK ;
Kerr, KF ;
Jing, L ;
Lapidus, JA ;
Lasarev, MR ;
Li, J ;
Li, YJ ;
Lobenhofer, EK ;
Lu, X ;
Malek, RL ;
Milton, S ;
Nagalla, SR ;
O'Malley, JP ;
Palmer, VS ;
Pattee, P ;
Paules, RS ;
Perou, CM ;
Phillips, K ;
Qin, LX ;
Qiu, Y ;
Quigley, SD ;
Rodland, M ;
Rusyn, I ;
Samson, LD ;
Schwartz, DA ;
Shi, Y ;
Shin, JL ;
Sieber, SO ;
Slifer, S .
NATURE METHODS, 2005, 2 (05) :351-356
[5]   Identifying subtle interrelated changes in functional gene categories using continuous measures of gene expression [J].
Ben-Shaul, Y ;
Bergman, H ;
Soreq, H .
BIOINFORMATICS, 2005, 21 (07) :1129-1137
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data [J].
Boutros, PC ;
Okey, AB .
BRIEFINGS IN BIOINFORMATICS, 2005, 6 (04) :331-343
[8]   Problems in gene clustering based on gene expression data [J].
Bryan, J .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) :44-66
[9]  
Chen GX, 2002, STAT SINICA, V12, P241
[10]  
CHOI H, 2008, MOL CELL PR IN PRESS