Further results on complete permutation monomials over finite fields

被引:12
作者
Feng, Xiutao [1 ]
Lin, Dongdai [2 ]
Wang, Liping [2 ]
Wang, Qiang [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mechizat, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
[3] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Finite fields; Permutation polynomials; Complete permutation polynomials; Monomials; POLYNOMIALS; TRINOMIALS; BINOMIALS; ELEMENTS;
D O I
10.1016/j.ffa.2019.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct several new classes of complete permutation monomials a(-1)x(d) over a finite field F-qn= with exponents d=q(n)-1/q-1 + 1,q(p-1)-1/q-1 + 1, and q(q-1)-1/q-1 + 1, respectively, where q = p(k) is a power of a prime number p. Our approach uses the AGW criterion (the multiplicative case) together with Dickson permutation polynomials and a class of exceptional polynomials respectively. One of our results confirms Conjecture 4.18 by G. Wu, N. Li, T. Helleseth, Y. Zhang in [42] under the assumption that the characteristic p is primitive modulo a prime number n + 1. Moreover, we show that Conjecture 4.18 is false in general using our approach and a counterexample is provided. We also reconfirm Conjecture 4.20 in [42] that was proved recently in [24], and extend some of these recent results to more general n's and more general a's. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 48 条
[1]   A generalized lucas sequence and permutation binomials [J].
Akbary, A ;
Wang, Q .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :15-22
[2]  
Akbary A, 2007, INT J MATH MATH SCI, V2007, P1, DOI [10.1155/2007/23408, DOI 10.1155/2007/23408]
[3]   On some classes of permutation polynomials [J].
Akbary, Amir ;
Alaric, Sean ;
Wang, Qiang .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (01) :121-133
[4]   On constructing permutations of finite fields [J].
Akbary, Amir ;
Ghioca, Dragos ;
Wang, Qiang .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) :51-67
[5]   On permutation polynomials of prescribed shape [J].
Akbary, Amir ;
Ghioca, Dragos ;
Wang, Qiang .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (02) :195-206
[6]   Complete permutation polynomials from exceptional polynomials [J].
Bartoli, D. ;
Giulietti, M. ;
Quoos, L. ;
Zini, G. .
JOURNAL OF NUMBER THEORY, 2017, 176 :46-66
[7]   On monomial complete permutation polynomials [J].
Bartoli, Daniele ;
Giulietti, Massimo ;
Zini, Giovanni .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 :132-158
[8]  
Bassalygo LA, 2015, MOSC MATH J, V15, P703
[9]   Permutation and complete permutation polynomials [J].
Bassalygo, L. A. ;
Zinoviev, V. A. .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 :198-211
[10]   Factoring Dickson polynomials over finite fields [J].
Bhargava, M ;
Zieve, ME .
FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (02) :103-111