A Deep Learning Approach for Breast Invasive Ductal Carcinoma Detection and Lymphoma Multi-Classification in Histological Images

被引:43
作者
Brancati, Nadia [1 ]
De Pietro, Giuseppe [1 ]
Frucci, Maria [1 ]
Riccio, Daniel [1 ,2 ]
机构
[1] Natl Res Council Italy ICAR CNR, Inst High Performance Comp & Networking, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, I-80138 Naples, Italy
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Histological images; deep learning; multi-classification; detection; SPARSE AUTOENCODER; CANCER;
D O I
10.1109/ACCESS.2019.2908724
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately identifying and categorizing cancer structures/sub-types in histological images is an important clinical task involving a considerable workload and a specific subspecialty of pathologists. Digitizing pathology is a current trend that provides large amounts of visual data allowing a faster and more precise diagnosis through the development of automatic image analysis techniques. Recent studies have shown promising results for the automatic analysis of cancer tissue by using deep learning strategies that automatically extract and organize the discriminative information from the data. This paper explores deep learning methods for the automatic analysis of Hematoxylin and Eosin stained histological images of breast cancer and lymphoma. In particular, a deep learning approach is proposed for two different use cases: the detection of invasive ductal carcinoma in breast histological images and the classification of lymphoma subtypes. Both use cases have been addressed by adopting a residual convolutional neural network that is part of a convolutional autoencoder network (i.e., FusionNet). The performances have been evaluated on the public datasets of digital histological images and have been compared with those obtained by using different deep neural networks (UNet and ResNet). Additionally, comparisons with the state of the art have been considered, in accordance with different deep learning approaches. The experimental results show an improvement of 5 : 06% in F-measure score for the detection task and an improvement of 1 :09% in the accuracy measure for the classification task.
引用
收藏
页码:44709 / 44720
页数:12
相关论文
共 29 条
[21]   A Dataset for Breast Cancer Histopathological Image Classification [J].
Spanhol, Fabio A. ;
Oliveira, Luiz S. ;
Petitjean, Caroline ;
Heutte, Laurent .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (07) :1455-1462
[22]  
Spanhol FA, 2016, IEEE IJCNN, P2560, DOI 10.1109/IJCNN.2016.7727519
[23]   Assessment of algorithms for mitosis detection in breast cancer histopathology images [J].
Veta, Mitko ;
van Diest, Paul J. ;
Willems, Stefan M. ;
Wang, Haibo ;
Madabhushi, Anant ;
Cruz-Roa, Angel ;
Gonzalez, Fabio ;
Larsen, Anders B. L. ;
Vestergaard, Jacob S. ;
Dahl, Anders B. ;
Ciresan, Dan C. ;
Schmidhuber, Juergen ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Tek, F. Boray ;
Walter, Thomas ;
Wang, Ching-Wei ;
Kondo, Satoshi ;
Matuszewski, Bogdan J. ;
Precioso, Frederic ;
Snell, Violet ;
Kittler, Josef ;
de Campos, Teofilo E. ;
Khan, Adnan M. ;
Rajpoot, Nasir M. ;
Arkoumani, Evdokia ;
Lacle, Miangela M. ;
Viergever, Max A. ;
Pluim, Josien P. W. .
MEDICAL IMAGE ANALYSIS, 2015, 20 (01) :237-248
[24]   Histopathological Image Classification Using Discriminative Feature-Oriented Dictionary Learning [J].
Vu, Tiep Huu ;
Mousavi, Hojjat Seyed ;
Monga, Vishal ;
Rao, Ganesh ;
Rao, U. K. Arvind .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (03) :738-751
[25]  
Wang D, 2016, DEEP LEARNING IDENTI
[26]  
WILCOXON F, 1946, J ECON ENTOMOL, V39, P269, DOI 10.1093/jee/39.2.269
[27]   Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images [J].
Xu, Jun ;
Xiang, Lei ;
Liu, Qingshan ;
Gilmore, Hannah ;
Wu, Jianzhong ;
Tang, Jinghai ;
Madabhushi, Anant .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (01) :119-130
[28]   Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features [J].
Yu, Kun-Hsing ;
Zhang, Ce ;
Berry, Gerald J. ;
Altman, Russ B. ;
Re, Christopher ;
Rubin, Daniel L. ;
Snyder, Michael .
NATURE COMMUNICATIONS, 2016, 7
[29]   One-class kernel subspace ensemble for medical image classification [J].
Zhang, Yungang ;
Zhang, Bailing ;
Coenen, Frans ;
Xiao, Jimin ;
Lu, Wenjin .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2014,