Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis

被引:107
作者
Correa-Aragunde, Natalia [1 ]
Foresi, Noelia [1 ]
Delledonne, Massimo [2 ]
Lamattina, Lorenzo [1 ]
机构
[1] Univ Nacl Mar del Plata, Inst Invest Biol, Fac Ciencias Exactas & Nat, RA-7600 Mar Del Plata, Argentina
[2] Univ Verona, Dipartimento Sci & Tecnol, I-37134 Verona, Italy
关键词
Arabidopsis; ascorbate peroxidase 1; auxin; nitric oxide; S-nitrosylation; root; BOX PROTEIN TIR1; NITRIC-OXIDE; NITROSYLATED PROTEINS; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; SALICYLIC-ACID; GENE; SIGNAL; THIOREDOXIN; IDENTIFICATION;
D O I
10.1093/jxb/ert172
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
S-Nitrosylation of Cys residues is one of the molecular mechanisms driven by nitric oxide (NO) for regulating biological functions of key proteins. While the studies on S-nitrosylation of Cys residues have served for identifying SNO proteomes, the physiological relevance of protein S-nitrosylation/denitrosylation remains poorly understood. In this study, it is shown that auxin influences the balance of S-nitrosylated/denitrosylated proteins in roots of Arabidopsis seedlings. 2D-PAGE allowed the identification of ascorbate peroxidase 1 (APX1) as target of auxin-induced denitrosylation in roots. Auxin causes APX1 denitrosylation and partial inhibition of APX1 activity in Arabidopsis roots. In agreement, the S-nitrosylated form of recombinant APX1 expressed in Escherichia coli is more active than the denitrosylated form. Consistently, Arabidopsis apx1 mutants have increased H2O2 accumulation in roots, shorter roots, and less sensitivity to auxin than the wild type. It is postulated that an auxin-regulated counterbalance of APX1 S-nitrosylation/denitrosylation contributes to a fine-tuned control of root development and determination of root architecture.
引用
收藏
页码:3339 / 3349
页数:11
相关论文
共 67 条
[1]   S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata -: ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition [J].
Abat, Jasmeet K. ;
Mattoo, Autar K. ;
Deswal, Renu .
FEBS JOURNAL, 2008, 275 (11) :2862-2872
[2]  
AMAKO K, 1994, PLANT CELL PHYSIOL, V35, P497
[3]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[4]   ASCORBATE PEROXIDASE - A HYDROGEN PEROXIDE-SCAVENGING ENZYME IN PLANTS [J].
ASADA, K .
PHYSIOLOGIA PLANTARUM, 1992, 85 (02) :235-241
[5]   Nitric Oxide Enhances Desiccation Tolerance of Recalcitrant Antiaris toxicaria Seeds via Protein S-Nitrosylation and Carbonylation [J].
Bai, Xuegui ;
Yang, Liming ;
Tian, Meihua ;
Chen, Jinhui ;
Shi, Jisen ;
Yang, Yongping ;
Hu, Xiangyang .
PLOS ONE, 2011, 6 (06)
[6]   Interplay between the NADP-Linked Thioredoxin and Glutathione Systems in Arabidopsis Auxin Signaling [J].
Bashandy, Talaat ;
Guilleminot, Jocelyne ;
Vernoux, Teva ;
Caparros-Ruiz, David ;
Ljung, Karin ;
Meyer, Yves ;
Reichheld, Jean-Philippe .
PLANT CELL, 2010, 22 (02) :376-391
[7]   Protein denitrosylation: enzymatic mechanisms and cellular functions [J].
Benhar, Moran ;
Forrester, Michael T. ;
Stamler, Jonathan S. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (10) :721-732
[8]   ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis [J].
Bright, J ;
Desikan, R ;
Hancock, JT ;
Weir, IS ;
Neill, SJ .
PLANT JOURNAL, 2006, 45 (01) :113-122
[9]   Auxin Perception-Structural Insights [J].
Calderon-Villalobos, Luz Irina ;
Tan, Xu ;
Zheng, Ning ;
Estelle, Mark .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2010, 2 (07) :a005546
[10]   Auxin transport promotes Arabidopsis lateral root initiation [J].
Casimiro, I ;
Marchant, A ;
Bhalerao, RP ;
Beeckman, T ;
Dhooge, S ;
Swarup, R ;
Graham, N ;
Inzé, D ;
Sandberg, G ;
Casero, PJ ;
Bennett, M .
PLANT CELL, 2001, 13 (04) :843-852