Picard Groups on Moduli of K3 Surfaces with Mukai Models

被引:15
|
作者
Greer, Francois [1 ]
Li, Zhiyuan [1 ]
Tian, Zhiyu [2 ]
机构
[1] Stanford Univ, Dept Math, Bldg 380, Stanford, CA 94305 USA
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
关键词
PROJECTIVE MODELS; SPACE;
D O I
10.1093/imrn/rnu152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the Picard group of the moduli space K-g of quasi-polarized K3 surfaces of genus g <= 12 and g not equal 11. In this range, K-g is unirational, and a general element in K-g is a complete intersection with respect to a vector bundle on a homogenous space, by the work of Mukai. In this paper, we find generators for the Picard group PicQ(K-g) using the Noether-Lefschetz (NL) theory. This verifies the NL conjecture on the moduli of K3 surfaces in these cases.
引用
收藏
页码:7238 / 7257
页数:20
相关论文
共 50 条