Necessary and sufficient conditions of some strong optimal solutions to the interval linear programming

被引:25
作者
Li, Wei [1 ]
Luo, Jiajia [1 ]
Deng, Chongyang [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Operat Res & Cybernet, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval linear programming; Strong feasible solutions; Strong optimal solutions; Tangent cone; NUMERICAL-SOLUTION METHOD; STRONG SOLVABILITY; OBJECTIVE FUNCTION; SYSTEMS; OPTIMIZATION; COEFFICIENTS;
D O I
10.1016/j.laa.2013.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers optimal solutions of general interval linear programming problems. Necessary and sufficient conditions of (A, b)-strong and (A, b, c)-strong optimal solutions to the interval linear programming with inequality constraints are proposed. The features of the proposed methods are illustrated by some examples. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3241 / 3255
页数:15
相关论文
共 22 条
[1]  
[Anonymous], 2006, Linear Optimization Problems with Inexact Data, DOI DOI 10.1007/0-387-32698-7_2
[2]  
Chinneck JW, 2000, J OPER RES SOC, V51, P209, DOI 10.2307/254261
[3]  
Fiedler M., 2006, Linear optimization problems with inexact data
[4]  
Hladik, 2011, LINEAR PROGRAMMING N
[5]   How to determine basis stability in interval linear programming [J].
Hladik, Milan .
OPTIMIZATION LETTERS, 2014, 8 (01) :375-389
[6]   Weak and strong solvability of interval linear systems of equations and inequalities [J].
Hladik, Milan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) :4156-4165
[7]   Optimal value bounds in nonlinear programming with interval data [J].
Hladik, Milan .
TOP, 2011, 19 (01) :93-106
[8]   Optimal value range in interval linear programming [J].
Hladik, Milan .
FUZZY OPTIMIZATION AND DECISION MAKING, 2009, 8 (03) :283-294
[9]   MULTIOBJECTIVE PROGRAMMING IN OPTIMIZATION OF THE INTERVAL OBJECTIVE FUNCTION [J].
ISHIBUCHI, H ;
TANAKA, H .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1990, 48 (02) :219-225
[10]   Numerical solution method for general interval quadratic programming [J].
Li, Wei ;
Tian, Xiaoli .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :589-595