Novel High-Speed Polarization Source for Decoy-State BB84 Quantum Key Distribution Over Free Space and Satellite Links

被引:27
作者
Yan, Zhizhong [1 ]
Meyer-Scott, Evan [1 ]
Bourgoin, Jean-Philippe [1 ]
Higgins, Brendon L. [1 ]
Gigov, Nikolay [1 ]
MacDonald, Allison
Hubel, Hannes
Jennewein, Thomas [1 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
BB84; decoy-state BB84; optical modulation; polarization; QKD; quantum optics; quantum cryptography; ENTANGLED PHOTONS; CRYPTOGRAPHY; COMMUNICATION;
D O I
10.1109/JLT.2013.2249040
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To implement the BB84 decoy-state quantum key distribution (QKD) protocol over a lossy ground-satellite quantum uplink requires a source that has high repetition rate of short laser pulses, long term stability, and no phase correlations between pulses. We present a new type of telecom optical polarization and amplitude modulator, based on a balanced Mach-Zehnder interferometer configuration, coupled to a polarization-preserving sum-frequency generation (SFG) optical setup, generating 532 nm photons with modulated polarization and amplitude states. The weak coherent pulses produced by SFG meet the challenging requirements for long range QKD, featuring a high clock rate of 76 MHz, pico-second pulse width, phase randomization, and 98% polarization visibility for all states. Successful QKD has been demonstrated using this apparatus with full system stability up to 160 minutes and channel losses as high 57 dB [1]. We present the design and simulation of the hardware through the Mueller matrix and Stokes vector relations, together with an experimental implementation working in the telecom wavelength band. We show the utility of the complete system by performing high loss QKD simulations, and confirm that our modulator fulfills the expected performance.
引用
收藏
页码:1399 / 1408
页数:10
相关论文
共 36 条
[1]   Long-distance quantum communication with entangled photons using satellites [J].
Aspelmeyer, M ;
Jennewein, T ;
Pfennigbauer, M ;
Leeb, WR ;
Zeilinger, A .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (06) :1541-1551
[2]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[3]   MEASUREMENT OF STOKES PARAMETERS OF LIGHT [J].
BERRY, HG ;
GABRIELSE, G ;
LIVINGSTON, AE .
APPLIED OPTICS, 1977, 16 (12) :3200-3205
[4]   Feasibility of satellite quantum key distribution [J].
Bonato, C. ;
Tomaello, A. ;
Da Deppo, V. ;
Naletto, G. ;
Villoresi, P. .
NEW JOURNAL OF PHYSICS, 2009, 11
[5]   A comprehensive design and performance analysis of low Earth orbit satellite quantum communication [J].
Bourgoin, J-P ;
Meyer-Scott, E. ;
Higgins, B. L. ;
Helou, B. ;
Erven, C. ;
Huebel, H. ;
Kumar, B. ;
Hudson, D. ;
D'Souza, I. ;
Girard, R. ;
Laflamme, R. ;
Jennewein, T. .
NEW JOURNAL OF PHYSICS, 2013, 15
[6]  
BOYD RW, 2003, NONLINEAR OPTICS, pCH3
[7]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[8]   Scintillation and beam-wander analysis in an optical ground station-satellite uplink [J].
Dios, F ;
Rubio, JA ;
Rodríguez, A ;
Comerón, A .
APPLIED OPTICS, 2004, 43 (19) :3866-3873
[9]   Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate [J].
Dixon, A. R. ;
Yuan, Z. L. ;
Dynes, J. F. ;
Sharpe, A. W. ;
Shields, A. J. .
OPTICS EXPRESS, 2008, 16 (23) :18790-18797
[10]   Continuous operation of high bit rate quantum key distribution [J].
Dixon, A. R. ;
Yuan, Z. L. ;
Dynes, J. F. ;
Sharpe, A. W. ;
Shields, A. J. .
APPLIED PHYSICS LETTERS, 2010, 96 (16)