Closed formula for the relative entropy of entanglement

被引:40
作者
Miranowicz, Adam [1 ]
Ishizaka, Satoshi [2 ,3 ]
机构
[1] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
[2] NEC Corp Ltd, Nano Elect Res Labs, Tsukuba, Ibaraki 3058501, Japan
[3] Univ Tokyo, INQIE, Meguro Ku, Tokyo 1538505, Japan
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevA.78.032310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The long-standing problem of finding a closed formula for the relative entropy of entanglement (REE) for two qubits is addressed. A compact-form solution to the inverse problem, which characterizes an entangled state for a given closest separable state, is obtained. Analysis of the formula for a large class of entangled states strongly suggests that a compact analytical solution of the original problem, which corresponds to finding the closest separable state for a given entangled state, can be given only in some special cases. A few applications of the compact-form formula are given to show additivity of the REE, to relate the REE with the Rains upper bound for distillable entanglement, and to show that a Bell state does not have a unique closest separable state.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A New Entanglement Monotone Based on Min-Relative Entropy
    Cui, Shijie
    Li, Junqing
    Huang, Li
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (04)
  • [42] Asymptotic relative entropy of entanglement -: art. no. 217902
    Audenaert, K
    Eisert, J
    Jané, E
    Plenio, MB
    Virmani, S
    De Moor, B
    PHYSICAL REVIEW LETTERS, 2001, 87 (21) : 217902 - 1
  • [43] Relative entropy of entanglement of two-qubit 'X' states
    黄接辉
    刘念华
    刘江涛
    于天宝
    何弦
    Chinese Physics B, 2010, 19 (11) : 88 - 93
  • [44] Bounds on relative entropy of entanglement for multi-party systems
    Plenio, MB
    Vedral, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35): : 6997 - 7002
  • [45] New Additivity Properties of the Relative Entropy of Entanglement and Its Generalizations
    Rubboli, Roberto
    Tomamichel, Marco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (07)
  • [46] Relative entanglement entropy for widely separated regions in curved spacetime
    Hollands, Stefan
    Islam, Onirban
    Sanders, Ko
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [47] A New Entanglement Monotone Based on Min-Relative Entropy
    Shijie Cui
    Junqing Li
    Li Huang
    International Journal of Theoretical Physics, 62
  • [48] MAX-RELATIVE ENTROPY OF ENTANGLEMENT, ALIAS LOG ROBUSTNESS
    Datta, Nilanjana
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (02) : 475 - 491
  • [49] Numerical calculations on the relative entanglement entropy in critical spin chains
    Nakagawa, Yuya O.
    Ugajin, Tomonori
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [50] Upper bounds for relative entropy of entanglement based on active learning
    Hou, Shi-Yao
    Cao, Chenfeng
    Zhou, D. L.
    Zeng, Bei
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)