Closed formula for the relative entropy of entanglement

被引:40
|
作者
Miranowicz, Adam [1 ]
Ishizaka, Satoshi [2 ,3 ]
机构
[1] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
[2] NEC Corp Ltd, Nano Elect Res Labs, Tsukuba, Ibaraki 3058501, Japan
[3] Univ Tokyo, INQIE, Meguro Ku, Tokyo 1538505, Japan
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevA.78.032310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The long-standing problem of finding a closed formula for the relative entropy of entanglement (REE) for two qubits is addressed. A compact-form solution to the inverse problem, which characterizes an entangled state for a given closest separable state, is obtained. Analysis of the formula for a large class of entangled states strongly suggests that a compact analytical solution of the original problem, which corresponds to finding the closest separable state for a given entangled state, can be given only in some special cases. A few applications of the compact-form formula are given to show additivity of the REE, to relate the REE with the Rains upper bound for distillable entanglement, and to show that a Bell state does not have a unique closest separable state.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Entanglement entropy, relative entropy and duality
    Moitra, Upamanyu
    Soni, Ronak M.
    Trivedi, Sandip P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [2] Entanglement entropy, relative entropy and duality
    Upamanyu Moitra
    Ronak M Soni
    Sandip P. Trivedi
    Journal of High Energy Physics, 2019
  • [3] Gaussian relative entropy of entanglement
    Chen, XY
    PHYSICAL REVIEW A, 2005, 71 (06):
  • [4] Continuity of relative entropy of entanglement
    Donald, Matthew J.
    Horodecki, Michal
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 264 (04): : 257 - 260
  • [5] Continuity of relative entropy of entanglement
    Donald, MJ
    Horodecki, M
    PHYSICS LETTERS A, 1999, 264 (04) : 257 - 260
  • [6] Relative Entropy and Squashed Entanglement
    Ke Li
    Andreas Winter
    Communications in Mathematical Physics, 2014, 326 : 63 - 80
  • [7] Relative Entropy and Squashed Entanglement
    Li, Ke
    Winter, Andreas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) : 63 - 80
  • [8] Proof of the holographic formula for entanglement entropy
    Fursaev, Dmitri V.
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (09):
  • [9] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Zhoubo Duan
    Lifang Niu
    Yangyang Wang
    Liang Liu
    International Journal of Theoretical Physics, 2017, 56 : 1929 - 1936
  • [10] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Duan, Zhoubo
    Niu, Lifang
    Wang, Yangyang
    Liu, Liang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (06) : 1929 - 1936