Proper connection of graphs

被引:93
作者
Borozan, Valentin [2 ]
Fujita, Shinya [1 ]
Gerek, Aydin [3 ]
Magnant, Colton [3 ]
Manoussakis, Yannis [2 ]
Montero, Leandro [2 ]
Tuza, Zsolt [2 ,4 ,5 ]
机构
[1] Gunma Natl Coll Technol, Dept Math, Maebashi, Gunma 3718530, Japan
[2] Univ Paris 11, LRI, F-91405 Orsay, France
[3] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[4] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[5] Univ Pannonia, Dept Comp Sci & Syst Technol, H-8200 Veszprem, Hungary
基金
日本学术振兴会; 匈牙利科学研究基金会;
关键词
Proper coloring; Proper connection; RAINBOW CONNECTION; PATHS; CYCLES;
D O I
10.1016/j.disc.2011.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge-colored graph G is k-proper connected if every pair of vertices is connected by k internally pairwise vertex-disjoint proper colored paths. The k-proper connection number of a connected graph G, denoted by Pc-k(G), is the smallest number of colors that are needed to color the edges of G in order to make it k-proper connected. In this paper we prove several upper bounds for pc(k)(G). We state some conjectures for general and bipartite graphs, and we prove them for the case when k = 1. In particular, we prove a variety of conditions on G which imply pc(1) (G) = 2. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2550 / 2560
页数:11
相关论文
共 17 条
[1]   Cycles and Paths in Edge-Colored Graphs with Given Degrees [J].
Abouelaoualim, A. ;
Das, Kinkar Ch. ;
de la Vega, W. Fernandez ;
Karpinski, M. ;
Manoussakis, Y. ;
Martinhon, C. A. ;
Saad, R. .
JOURNAL OF GRAPH THEORY, 2010, 64 (01) :63-86
[2]  
[Anonymous], PERIOD MATH HUNGAR
[3]  
[Anonymous], 1952, Proceedings of the London Mathematical Society, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[4]   Alternating cycles and paths in edge-coloured multigraphs: A survey [J].
BangJensen, J ;
Gutin, G .
DISCRETE MATHEMATICS, 1997, 165 :39-60
[5]  
Caro Y, 2008, ELECTRON J COMB, V15
[6]  
Chartrand G., 2007, Congr. Numer, V184, P209
[7]  
Chartrand G, 2008, MATH BOHEM, V133, P85
[8]   Rainbow paths [J].
Dellamonica, Domingos, Jr. ;
Magnant, Colton ;
Martin, Daniel M. .
DISCRETE MATHEMATICS, 2010, 310 (04) :774-781
[9]   RELATIVE LENGTH OF LONG PATHS AND CYCLES IN GRAPHS WITH LARGE DEGREE SUMS [J].
ENOMOTO, H ;
VANDEHEUVEL, J ;
KANEKO, A ;
SAITO, A .
JOURNAL OF GRAPH THEORY, 1995, 20 (02) :213-225
[10]   Properly colored paths and cycles [J].
Fujita, Shinya ;
Magnant, Colton .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (14) :1391-1397