Pointwise inequalities for Sobolev functions on generalized cuspidal domains

被引:1
作者
Zhu, Zheng [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
来源
ANNALES FENNICI MATHEMATICI | 2022年 / 47卷 / 02期
基金
芬兰科学院;
关键词
Subject Primary Sobolev functions; cuspidal domains; pointwise inequality; MEASURE DENSITY;
D O I
10.54330/afm.117881
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of Rn-1 be a bounded star-shaped domain and Omega(psi) be an outward cuspidal domain with base domain Omega. We prove that for 1 < p <= infinity, W-1,W-p(Omega(psi)) = M1,p(Omega(psi)) if and only if W-1,W-p(Omega) = M1,p(Omega).
引用
收藏
页码:747 / 757
页数:11
相关论文
共 13 条
[1]  
Acerbi E., 1988, Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986), P1
[2]  
[Anonymous], 1985, SOBOLEV SPACES
[3]  
BOJARSKI B, 1993, STUD MATH, V106, P77
[4]   Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains [J].
Eriksson-Bique, Sylvester ;
Koskela, Pekka ;
Maly, Jan ;
Zhu, Zheng .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (05) :3748-3759
[5]  
Evans L.C., 2015, Textbooks in Mathematics, pxiv+299
[6]  
Hajlasz P, 1996, POTENTIAL ANAL, V5, P403
[7]  
Hajlasz P, 2008, REV MAT IBEROAM, V24, P645
[8]   Sobolev embeddings, extensions and measure density condition [J].
Hajlasz, Piotr ;
Koskela, Pekka ;
Tuominen, Heli .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1217-1234
[9]  
HEINONEN J., 2015, New Math. Monogr., V27
[10]  
Koskela P, 2008, MATH RES LETT, V15, P727