Asymptotics for Two-Dimensional Atoms

被引:6
作者
Phan Thanh Nam [1 ]
Portmann, Fabian [2 ]
Solovej, Jan Philip [1 ]
机构
[1] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen, Denmark
[2] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
来源
ANNALES HENRI POINCARE | 2012年 / 13卷 / 02期
关键词
THOMAS-FERMI; SCOTT CORRECTION; HYDROGEN-ATOM; ENERGY; MOLECULES; FIELDS; STATES; MODEL;
D O I
10.1007/s00023-011-0123-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge Z > 0 and N quantum electrons of charge -1 is E(N, Z) = - 1/2 Z(2) lnZ + ( E-TF (lambda) + 1/2 c(H))Z(2) + o(Z(2)) when Z -> a and N/Z -> lambda, where E (TF)(lambda) is given by a Thomas-Fermi type variational problem and c (H) a parts per thousand -2.2339 is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when Z -> a, which is contrary to the expected behavior of three-dimensional atoms.
引用
收藏
页码:333 / 362
页数:30
相关论文
共 29 条
[1]  
Abramowitz M., 1968, Handbook of Mathematical Functions
[2]  
Dirac PAM, 1930, P CAMB PHILOS SOC, V26, P376
[3]   On the two-dimensional Coulomb-like potential with a central point interaction [J].
Duclos, P. ;
Stovicek, P. ;
Tusek, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (47)
[4]  
Euler L., 1736, INVENTIO SUMMAE CUIU
[5]   ON THE ENERGY OF A LARGE ATOM [J].
FEFFERMAN, CL ;
SECO, LA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 23 (02) :525-530
[6]  
Fermi E., 1927, REND ACCAD NAZ LINCE, V6, P602
[7]   SCHRODINGER INEQUALITIES AND ASYMPTOTIC-BEHAVIOR OF ELECTRON-DENSITY OF ATOMS AND MOLECULES [J].
HOFFMANNOSTENHOF, M ;
HOFFMANNOSTENHOF, T .
PHYSICAL REVIEW A, 1977, 16 (05) :1782-1785
[8]   AN ATOMIC-ENERGY LOWER BOUND THAT AGREES WITH SCOTT CORRECTION [J].
HUGHES, W .
ADVANCES IN MATHEMATICS, 1990, 79 (02) :213-270
[9]   Geometric methods for nonlinear many-body quantum systems [J].
Lewin, Mathieu .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (12) :3535-3595
[10]  
Lieb E., 2001, Analysis