Photovoltage field-effect transistors

被引:254
作者
Adinolfi, Valerio [1 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM-DOT PHOTODETECTORS; SOLAR-CELLS; SILICON; OPTOELECTRONICS; RECOMBINATION;
D O I
10.1038/nature21050
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The detection of infrared radiation enables night vision, health monitoring, optical communications and three-dimensional object recognition. Silicon is widely used in modern electronics, but its electronic bandgap prevents the detection of light at wavelengths longer than about 1,100 nanometres. It is therefore of interest to extend the performance of silicon photodetectors into the infrared spectrum, beyond the bandgap of silicon(1,2). Here we demonstrate a photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber. The photovoltage generated at the interface between the silicon and the quantum dot, combined with the high transconductance provided by the silicon device, leads to high gain (more than 10(4) electrons per photon at 1,500 nanometres), fast time response (less than 10 microseconds) and a widely tunable spectral response. Our photovoltage field-effect transistor has a responsivity that is five orders of magnitude higher at a wavelength of 1,500 nanometres than that of previous infrared-sensitized silicon detectors(3). The sensitization is achieved using a room-temperature solution process and does not rely on traditional high-temperature epitaxial growth of semiconductors (such as is used for germanium and III-V semiconductors)(4,5). Our results show that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.
引用
收藏
页码:324 / +
页数:5
相关论文
共 23 条
[1]   Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer [J].
Adinolfi, Valerio ;
Kramer, Illan J. ;
Labelle, Andre J. ;
Sutherland, Brandon R. ;
Hoogland, S. ;
Sargent, Edward H. .
ACS NANO, 2015, 9 (01) :356-362
[2]   Size-dependent band gap of colloidal quantum dots [J].
Baskoutas, S ;
Terzis, AF .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (01)
[3]   Nanostructured black silicon and the optical reflectance of graded-density surfaces [J].
Branz, Howard M. ;
Yost, Vernon E. ;
Ward, Scott ;
Jones, Kim M. ;
To, Bobby ;
Stradins, Paul .
APPLIED PHYSICS LETTERS, 2009, 94 (23)
[4]   Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes [J].
Carey, JE ;
Crouch, CH ;
Shen, MY ;
Mazur, E .
OPTICS LETTERS, 2005, 30 (14) :1773-1775
[5]   Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters [J].
Kamat, Prashant V. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (48) :18737-18753
[6]   Ultrasensitive solution-cast quantum dot photodetectors [J].
Konstantatos, Gerasimos ;
Howard, Ian ;
Fischer, Armin ;
Hoogland, Sjoerd ;
Clifford, Jason ;
Klem, Ethan ;
Levina, Larissa ;
Sargent, Edward H. .
NATURE, 2006, 442 (7099) :180-183
[7]  
Konstantatos G, 2012, NAT NANOTECHNOL, V7, P363, DOI [10.1038/nnano.2012.60, 10.1038/NNANO.2012.60]
[8]   Colloidal quantum dot photodetectors [J].
Konstantatos, Gerasimos ;
Sargent, Edward H. .
INFRARED PHYSICS & TECHNOLOGY, 2011, 54 (03) :278-282
[9]   Hybrid 2D-0D MoS2-PbS Quantum Dot Photodetectors [J].
Kufer, Dominik ;
Nikitskiy, Ivan ;
Lasanta, Tania ;
Navickaite, Gabriele ;
Koppens, Frank H. L. ;
Konstantatos, Gerasimos .
ADVANCED MATERIALS, 2015, 27 (01) :176-180
[10]   Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites [J].
Lee, Michael M. ;
Teuscher, Joel ;
Miyasaka, Tsutomu ;
Murakami, Takurou N. ;
Snaith, Henry J. .
SCIENCE, 2012, 338 (6107) :643-647