A multiscale discontinuous Galerkin method

被引:16
作者
Bochev, P
Hughes, TJR
Scovazzi, G
机构
[1] Sandia Natl Labs, Computat Math & Algorithms Dept, Albuquerque, NM 87185 USA
[2] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Sandia Natl Labs, Computat Phys R&D Dept, Albuquerque, NM 87185 USA
来源
LARGE-SCALE SCIENTIFIC COMPUTING | 2006年 / 3743卷
关键词
D O I
10.1007/11666806_8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a new class of Discontinuous Galerkin (DG) methods based on variational multiscale ideas. Our approach begins with an additive decomposition of the discontinuous finite element space into continuous (coarse) and discontinuous (fine) components. Variational multiscale analysis is used to define an interscale transfer operator that associates coarse and fine scale functions. Composition of this operator with a donor DC method yields a new formulation that combines the advantages of DG methods with the attractive and more efficient computational structure of a continuous Galerkin method. The new class of DG methods is illustrated for a scalar advection-diffusion problem.
引用
收藏
页码:84 / 93
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 2002, CLASSICS APPL MATH
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   A discontinuous hp finite element method for convection-diffusion problems [J].
Baumann, CE ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) :311-341
[4]  
Brezzi F, 2000, NUMER METH PART D E, V16, P365, DOI 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO
[5]  
2-Y
[6]  
COCKBURN B, 2000, LECT NOTES COMPUTATI, V11
[7]   The PK+1 SK local discontinuous Galerkin method for ellipticequations [J].
Dawson, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) :2151-2170
[8]  
HUGHES T, UNPUB COMP METH APPL
[9]  
HUGHES TJR, IN PRESS COMP METH A
[10]  
HUGHES TJR, 2000, LECT NOTES COMPUTATI, V11