Time-varying bang-bang property of time optimal controls for heat equation and its application

被引:17
作者
Chen, Ning [1 ]
Wang, Yanqing [2 ]
Yang, Dong-Hui [1 ,3 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410075, Hunan, Peoples R China
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[3] Cent S Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Heat equation; Bang-bang property; Time optimal control problem; Target optimal control problem; NULL CONTROLLABILITY; BOUNDARY CONTROL; PRINCIPLE; EQUIVALENCE;
D O I
10.1016/j.sysconle.2017.12.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the bang-bang property of time optimal controls for heat equation is established. Compared with the existing results on these problems, the bound of control variables is not a constant but a time-varying function. As an application of the bang-bang property, some kind of relation between the time optimal control problem and its corresponding target optimal control problem is considered. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 1999, APPL MATH
[2]  
[Anonymous], 1956, Quarterly of Applied Mathematics, DOI DOI 10.1090/QAM/78516
[3]   Observability inequalities and measurable sets [J].
Apraiz, J. ;
Escauriaza, L. ;
Wang, G. ;
Zhang, C. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (11) :2433-2475
[4]  
Faber C., 1995, P ROY SOC EDINB A, V125, P31
[5]   TIME AND NORM OPTIMAL CONTROLS: A SURVEY OF RECENT RESULTS AND OPEN PROBLEMS [J].
Fattorini, H. O. .
ACTA MATHEMATICA SCIENTIA, 2011, 31 (06) :2203-2218
[6]  
Fattorini H.O., 1999, Encyclopedia of Mathematics and its Applications, V62
[7]   Null and approximate controllability for weakly blowing up semilinear heat equations [J].
Fernández-Cara, E ;
Zuazua, E .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (05) :583-616
[8]  
Fuisikov A. V., 1996, CONTROLLABILITY EVOL
[9]   Regularity of the minimum time function and minimum energy problems: The linear case [J].
Gozzi, F ;
Loreti, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1195-1221
[10]   Optimal actuator location of minimum norm controls for heat equation with general controlled domain [J].
Guo, Bao-Zhu ;
Xu, Yashan ;
Yang, Dong-Hui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) :3588-3614