Ultimate Confinement of Phonon Propagation in Silicon Nanocrystalline Structure

被引:50
作者
Oyake, Takafumi [1 ]
Feng, Lei [1 ]
Shiga, Takuma [1 ]
Isogawa, Masayuki [2 ]
Nakamura, Yoshiaki [2 ]
Shiomi, Junichiro [1 ,3 ]
机构
[1] Univ Tokyo, Dept Mech Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[3] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
基金
日本学术振兴会;
关键词
HIGH THERMOELECTRIC FIGURE; GREENS-FUNCTION METHOD; THERMAL-CONDUCTIVITY; BULK THERMOELECTRICS; AMORPHOUS-SILICON; SI; NANOSTRUCTURES; PERFORMANCE; SIMULATION; NANOWIRES;
D O I
10.1103/PhysRevLett.120.045901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Temperature-dependent thermal conductivity of epitaxial silicon nanocrystalline (SiNC) structures composed of nanometer-sized grains separated by ultrathin silicon-oxide (SiO2) films (similar to 0.3 nm) is measured by the time domain thermoreflectance technique in the range from 50 to 300 K. The thermal conductivity of SiNC structures with a grain size of 3 and 5 nm is anomalously low at the entire temperature range, significantly below the values of bulk amorphous Si and SiO2. The phonon gas kinetic model, with intrinsic transport properties obtained by first-principles-based anharmonic lattice dynamics and phonon transmittance across ultrathin SiO2 films obtained by atomistic Green's function, reproduces the measured thermal conductivity without any fitting parameters. The analysis reveals that mean free paths of acoustic phonons in the SiNC structures are equivalent or even below half the phonon wavelength, i.e., the minimum thermal conductivity scenario. The result demonstrates that the nanostructures with extremely small length scales and a controlled interface can give rise to ultimate classical confinement of thermal phonon propagation.
引用
收藏
页数:6
相关论文
共 44 条
[1]   Diffusons, locons and propagons: character of atomic vibrations in amorphous Si [J].
Allen, PB ;
Feldman, JL ;
Fabian, J ;
Wooten, F .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1999, 79 (11-12) :1715-1731
[2]  
Ashcroft N W., 2003, Solid State Physics
[3]   Granular electronic systems [J].
Beloborodov, I. S. ;
Lopatin, A. V. ;
Vinokur, V. M. ;
Efetov, K. B. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :469-518
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   Strained endotaxial nanostructures with high thermoelectric figure of merit [J].
Biswas, Kanishka ;
He, Jiaqing ;
Zhang, Qichun ;
Wang, Guoyu ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE CHEMISTRY, 2011, 3 (02) :160-166
[6]   Size effects on the thermal conductivity of amorphous silicon thin films [J].
Braun, Jeffrey L. ;
Baker, Christopher H. ;
Giri, Ashutosh ;
Elahi, Mirza ;
Artyushkova, Kateryna ;
Beechem, Thomas E. ;
Norris, Pamela M. ;
Leseman, Zayd C. ;
Gaskins, John T. ;
Hopkins, Patrick E. .
PHYSICAL REVIEW B, 2016, 93 (14)
[7]   Nanostructured Bulk Silicon as an Effective Thermoelectric Material [J].
Bux, Sabah K. ;
Blair, Richard G. ;
Gogna, Pawan K. ;
Lee, Hohyun ;
Chen, Gang ;
Dresselhaus, Mildred S. ;
Kaner, Richard B. ;
Fleurial, Jean-Pierre .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (15) :2445-2452
[8]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[9]   THERMAL-CONDUCTIVITY OF THIN-FILMS - MEASUREMENTS AND UNDERSTANDING [J].
CAHILL, DG ;
FISCHER, HE ;
KLITSNER, T ;
SWARTZ, ET ;
POHL, RO .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (03) :1259-1266
[10]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140