Stable surface solitons in truncated complex potentials

被引:20
作者
He, Yingji [1 ]
Mihalache, Dumitru [2 ]
Zhu, Xing [3 ]
Guo, Lina [1 ]
Kartashov, Yaroslav V. [4 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Elect & Informat, Guangzhou 510665, Guangdong, Peoples R China
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, Magurele 077125, Romania
[3] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[4] Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia
基金
中国国家自然科学基金;
关键词
PERIODIC STRUCTURES; OPTICS; GAIN;
D O I
10.1364/OL.37.002526
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that surface solitons in the one-dimensional nonlinear Schrodinger equation with truncated complex periodic potential can be stabilized by linear homogeneous losses, which are necessary to balance gain in the near-surface channel arising from the imaginary part of potential. Such solitons become stable attractors when the strength of homogeneous losses acquires values from a limited interval and they exist in focusing and defocusing media. The domains of stability of the surface solitons shrink with an increase in the amplitude of the imaginary part of complex potential. (C) 2012 Optical Society of America
引用
收藏
页码:2526 / 2528
页数:3
相关论文
共 23 条
[1]   Dissipative periodic waves, solitons, and breathers of the nonlinear Schrodinger equation with complex potentials [J].
Abdullaev, F. Kh. ;
Konotop, V. V. ;
Salerno, M. ;
Yulin, A. V. .
PHYSICAL REVIEW E, 2010, 82 (05)
[2]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[3]   Spectral renormalization method for computing self-localized solutions to nonlinear systems [J].
Ablowitz, MJ ;
Musslimani, ZH .
OPTICS LETTERS, 2005, 30 (16) :2140-2142
[4]   Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices [J].
Bludov, Yu. V. ;
Konotop, V. V. .
PHYSICAL REVIEW A, 2010, 81 (01)
[5]   Binary parity-time-symmetric nonlinear lattices with balanced gain and loss [J].
Dmitriev, Sergey V. ;
Sukhorukov, Andrey A. ;
Kivshar, Yuri S. .
OPTICS LETTERS, 2010, 35 (17) :2976-2978
[6]   Lattice solitons in PT-symmetric mixed linear-nonlinear optical lattices [J].
He, Yingji ;
Zhu, Xing ;
Mihalache, Dumitru ;
Liu, Jinglin ;
Chen, Zhanxu .
PHYSICAL REVIEW A, 2012, 85 (01)
[7]   Dissipative surface solitons in periodic structures [J].
Kartashov, Y. V. ;
Konotop, V. V. ;
Vysloukh, V. A. .
EPL, 2010, 91 (03)
[8]   Dissipative defect modes in periodic structures [J].
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Vysloukh, Victor A. ;
Torner, Lluis .
OPTICS LETTERS, 2010, 35 (10) :1638-1640
[9]   Surface gap solitons [J].
Kartashov, YV ;
Vysloukh, VA ;
Torner, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[10]   Spatial solitons supported by localized gain in nonlinear optical waveguides [J].
Lam, C. -K. ;
Malomed, B. A. ;
Chow, K. W. ;
Wai, P. K. A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 173 :233-243