Analysis of the stochastic FitzHugh-Nagumo system

被引:19
|
作者
Bonaccorsi, Stefano [1 ]
Mastrogiacomo, Elisa [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
stochastic FitzHugh-Nagumo system; invariant measures; Wiener process; transition semigroup; Kolmogorov operator;
D O I
10.1142/S0219025708003191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a system of stochastic differential equations with dissipative non-linearity which arise incertain neurobiology models. Besides proving existence,unique ness and continuous dependence on the initial datum, we shall mainly be concerned with the asymptotic behaviour of the solution. We prove the existence of an invariant ergodic measure nu associated with the transition semigroup P-t; further, we identify its infinitesimal generator in the space L-2 (H;nu).
引用
收藏
页码:427 / 446
页数:20
相关论文
共 50 条
  • [1] Limit dynamics for the stochastic FitzHugh-Nagumo system
    Lv, Yan
    Wang, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 3091 - 3105
  • [2] STOCHASTIC FITZHUGH-NAGUMO SYSTEMS WITH DELAY
    Xu, Lu
    Yan, Weiping
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03): : 1079 - 1103
  • [3] Deterministic and Stochastic FitzHugh-Nagumo Systems
    Thieullen, Michele
    STOCHASTIC BIOMATHEMATICAL MODELS: WITH APPLICATIONS TO NEURONAL MODELING, 2013, 2058 : 175 - 186
  • [4] Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains
    Wang, Bixiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2811 - 2828
  • [5] Dynamics of stochastic FitzHugh-Nagumo system on unbounded domains with memory
    My, Bui Kim
    Toan, Nguyen Duong
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2023, 38 (03): : 453 - 476
  • [6] Stochastic resonance in the FitzHugh-Nagumo system driven by bounded noise
    容启亮
    雷佑铭
    徐雁
    Chinese Physics B, 2010, (01) : 143 - 147
  • [7] Stochastic resonance in the FitzHugh-Nagumo system driven by bounded noise
    Yung Kai-Leung
    Lei You-Ming
    Xu Yan
    CHINESE PHYSICS B, 2010, 19 (01)
  • [8] Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance
    Lindner, B
    Schimansky-Geier, L
    PHYSICAL REVIEW E, 1999, 60 (06): : 7270 - 7276
  • [9] Optimal control of stochastic FitzHugh-Nagumo equation
    Barbu, Viorel
    Cordoni, Francesco
    Di Persio, Luca
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (04) : 746 - 756
  • [10] STOCHASTIC RESONANCE IN AN ELECTRONIC FITZHUGH-NAGUMO MODEL
    MOSS, F
    DOUGLASS, JK
    WILKENS, L
    PIERSON, D
    PANTAZELOU, E
    STOCHASTIC PROCESSES IN ASTROPHYSICS, 1993, 706 : 26 - 41