共 44 条
To use or not to use propensity score matching?
被引:88
作者:
Wang, Jixian
[1
]
机构:
[1] Celgene Int Sarl, Route Perreux 1, Boudry, Basel, Switzerland
关键词:
causal inference;
dose-exposure-response relationship;
health technology assessment;
modeling and simulation;
MULTIVARIATE;
PERFORMANCE;
BALANCE;
ESTIMATORS;
D O I:
10.1002/pst.2051
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
Propensity score matching (PSM) has been widely used to reduce confounding biases in observational studies. Its properties for statistical inference have also been investigated and well documented. However, some recent publications showed concern of using PSM, especially on increasing postmatching covariate imbalance, leading to discussion on whether PSM should be used or not. We review empirical and theoretical evidence for and against its use in practice and revisit the property of equal percent bias reduction and adapt it to more practical situations, showing that PSM has some additional desirable properties. With a small simulation, we explore the impact of caliper width on biases due to mismatching in matched samples and due to the difference between matched and target populations and show some issue of PSM may be due to inadequate caliper selection. In summary, we argue that the right question should be when and how to use PSM rather than to use or not to use it and give suggestions accordingly.
引用
收藏
页码:15 / 24
页数:10
相关论文